pyshqg


Namepyshqg JSON
Version 1.0.1 PyPI version JSON
download
home_page
SummaryQG Model in spherical harmonics
upload_time2024-03-13 11:23:13
maintainer
docs_urlNone
author
requires_python>=3.9
licenseMIT
keywords quasi-geostrophic numerical model atmosphere spherical harmonics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
![Animated example](http://cerea.enpc.fr/HomePages/farchia/pyshqg-map.gif)

# pyshqg

[![Documentation Status](https://readthedocs.org/projects/pyshqg/badge/?version=latest)](https://pyshqg.readthedocs.io/en/latest/?badge=latest)

`pyshqg` is a python solver for the [Marshal and Molteni (1993) quasi-geostrophic (QG) model](https://doi.org/10.1175/1520-0469(1993)050%3C1792:TADUOP%3E2.0.CO;2).
QG models express the conservation of potential vorticity over time and are
meant to describe the large-scale circulation of the atmosphere under specific hypotheses.
This QG model is very special, because it is expressed in spherical harmonics and
because it encapsulates complex physical processes.

- [Documentation](https://pyshqg.readthedocs.io)
- [Source code](https://github.com/cerea-daml/pyshqg)
- [Issue tracker](https://github.com/cerea-daml/pyshqg/issues)

## Installation

Install using pip:

    $ pip install pyshqg

More details can be found on this [page](https://pyshqg.readthedocs.io/en/latest/pages/installation.html).

## Usage

Here is a sneak peak at how to use the package.
First import all the machinery.

    >>> import numpy as np
    >>>
    >>> from pyshqg.backend.numpy_backend import NumpyBackend as Backend
    >>> from pyshqg.preprocessing.reference_data import load_test_data
    >>> from pyshqg.core.constructors import construct_model, construct_integrator

Load the data and create the model and integrator.

    >>> ds_test = load_test_data(internal_truncature=21, grid_truncature=31)
    >>> backend = Backend(floatx='float64')
    >>> model = construct_model(backend, ds_test.config)
    >>> rk4 = construct_integrator(ds_test.config['rk4_integration'], model)

Perform one integration step and test against the test data.

    >>> state = model.model_state(ds_test.spec_q.to_numpy())
    >>> fwd_state = rk4.forward(state)
    >>>
    >>> def rms(x):
    ...     return np.sqrt(np.mean(np.square(x)))
    >>>
    >>> def rmse(x, y):
    ...     return rms(x-y)
    >>>
    >>> rms_ref = rms(ds_test.spec_rk4.to_numpy())
    >>> rms_diff = rmse(
    ...     backend.to_numpy(fwd_state['spec_q']),
    ...     ds_test.spec_rk4.to_numpy(),
    ... )
    >>> assert rms_diff < 1e-6 * rms_ref

Run the model for a full trajectory and convert the output to an ``xarray.Dataset``.

    >>> state = model.model_state(ds_test.spec_q.to_numpy())
    >>> trajectory = rk4.run(
    ...     state,
    ...     t_start=0,
    ...     num_snapshots=8,
    ...     num_steps_per_snapshot=10,
    ...     variables=('q', 'psi'),
    ... )
    >>> trajectory
    <xarray.Dataset> Size: 14MB
    Dimensions:  (time: 9, batch: 16, level: 3, lat: 32, lon: 64)
    Coordinates:
      * time     (time) int64 72B 0 18000 36000 54000 ... 90000 108000 126000 144000
      * lat      (lat) float64 256B -85.76 -80.27 -74.74 ... 74.74 80.27 85.76
      * lon      (lon) float64 512B 180.0 185.6 191.2 196.9 ... 163.1 168.8 174.4
    Dimensions without coordinates: batch, level
    Data variables:
        q        (time, batch, level, lat, lon) float64 7MB -0.000298 ... -0.0001269
        psi      (time, batch, level, lat, lon) float64 7MB 1.445e+08 ... -1.38e+07

More details can be found on this [page](https://pyshqg.readthedocs.io/en/latest/pages/examples.html).

## Aknowledgements

This python package is based on an original implementation of the model
in Fortran written at LMD by XXX.

## Todo-list

- make higher resolution gif animation
- make more example notebooks (see list below)
- fill in the documentation sections
- fill in docstrings, in particular with the convention used in the docs
- publish first version on pypi and conda-forge
- write pytorch/jax backends
- include unit tests in github CI
- apply linting and include it in github CI

Potential example notebooks:

- one notebook for each term of the QG model
- how to compute the forecast skill T15 vs T31 (as illustration)
- how to use tf backend to compute the grad
- gradient test for tf backend
- adjoint test for tf backend
- how to define a NN-based model error correction for the T21 and train it with dummy data


            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "pyshqg",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": "",
    "keywords": "quasi-geostrophic,numerical model,atmosphere,spherical harmonics",
    "author": "",
    "author_email": "Alban Farchi <alban.farchi@enpc.fr>, Marc Bocquet <marc.bocquet@enpc.fr>, Quentin Malartic <quentin.malartic@enpc.fr>, Fabio D'Andrea <fabio.dandrea@lmd.ipsl.fr>",
    "download_url": "https://files.pythonhosted.org/packages/07/b1/220190e402ce57a39454b1f8932d01312963219dbf451802bd232d9d0e7b/pyshqg-1.0.1.tar.gz",
    "platform": null,
    "description": "\n![Animated example](http://cerea.enpc.fr/HomePages/farchia/pyshqg-map.gif)\n\n# pyshqg\n\n[![Documentation Status](https://readthedocs.org/projects/pyshqg/badge/?version=latest)](https://pyshqg.readthedocs.io/en/latest/?badge=latest)\n\n`pyshqg` is a python solver for the [Marshal and Molteni (1993) quasi-geostrophic (QG) model](https://doi.org/10.1175/1520-0469(1993)050%3C1792:TADUOP%3E2.0.CO;2).\nQG models express the conservation of potential vorticity over time and are\nmeant to describe the large-scale circulation of the atmosphere under specific hypotheses.\nThis QG model is very special, because it is expressed in spherical harmonics and\nbecause it encapsulates complex physical processes.\n\n- [Documentation](https://pyshqg.readthedocs.io)\n- [Source code](https://github.com/cerea-daml/pyshqg)\n- [Issue tracker](https://github.com/cerea-daml/pyshqg/issues)\n\n## Installation\n\nInstall using pip:\n\n    $ pip install pyshqg\n\nMore details can be found on this [page](https://pyshqg.readthedocs.io/en/latest/pages/installation.html).\n\n## Usage\n\nHere is a sneak peak at how to use the package.\nFirst import all the machinery.\n\n    >>> import numpy as np\n    >>>\n    >>> from pyshqg.backend.numpy_backend import NumpyBackend as Backend\n    >>> from pyshqg.preprocessing.reference_data import load_test_data\n    >>> from pyshqg.core.constructors import construct_model, construct_integrator\n\nLoad the data and create the model and integrator.\n\n    >>> ds_test = load_test_data(internal_truncature=21, grid_truncature=31)\n    >>> backend = Backend(floatx='float64')\n    >>> model = construct_model(backend, ds_test.config)\n    >>> rk4 = construct_integrator(ds_test.config['rk4_integration'], model)\n\nPerform one integration step and test against the test data.\n\n    >>> state = model.model_state(ds_test.spec_q.to_numpy())\n    >>> fwd_state = rk4.forward(state)\n    >>>\n    >>> def rms(x):\n    ...     return np.sqrt(np.mean(np.square(x)))\n    >>>\n    >>> def rmse(x, y):\n    ...     return rms(x-y)\n    >>>\n    >>> rms_ref = rms(ds_test.spec_rk4.to_numpy())\n    >>> rms_diff = rmse(\n    ...     backend.to_numpy(fwd_state['spec_q']),\n    ...     ds_test.spec_rk4.to_numpy(),\n    ... )\n    >>> assert rms_diff < 1e-6 * rms_ref\n\nRun the model for a full trajectory and convert the output to an ``xarray.Dataset``.\n\n    >>> state = model.model_state(ds_test.spec_q.to_numpy())\n    >>> trajectory = rk4.run(\n    ...     state,\n    ...     t_start=0,\n    ...     num_snapshots=8,\n    ...     num_steps_per_snapshot=10,\n    ...     variables=('q', 'psi'),\n    ... )\n    >>> trajectory\n    <xarray.Dataset> Size: 14MB\n    Dimensions:  (time: 9, batch: 16, level: 3, lat: 32, lon: 64)\n    Coordinates:\n      * time     (time) int64 72B 0 18000 36000 54000 ... 90000 108000 126000 144000\n      * lat      (lat) float64 256B -85.76 -80.27 -74.74 ... 74.74 80.27 85.76\n      * lon      (lon) float64 512B 180.0 185.6 191.2 196.9 ... 163.1 168.8 174.4\n    Dimensions without coordinates: batch, level\n    Data variables:\n        q        (time, batch, level, lat, lon) float64 7MB -0.000298 ... -0.0001269\n        psi      (time, batch, level, lat, lon) float64 7MB 1.445e+08 ... -1.38e+07\n\nMore details can be found on this [page](https://pyshqg.readthedocs.io/en/latest/pages/examples.html).\n\n## Aknowledgements\n\nThis python package is based on an original implementation of the model\nin Fortran written at LMD by XXX.\n\n## Todo-list\n\n- make higher resolution gif animation\n- make more example notebooks (see list below)\n- fill in the documentation sections\n- fill in docstrings, in particular with the convention used in the docs\n- publish first version on pypi and conda-forge\n- write pytorch/jax backends\n- include unit tests in github CI\n- apply linting and include it in github CI\n\nPotential example notebooks:\n\n- one notebook for each term of the QG model\n- how to compute the forecast skill T15 vs T31 (as illustration)\n- how to use tf backend to compute the grad\n- gradient test for tf backend\n- adjoint test for tf backend\n- how to define a NN-based model error correction for the T21 and train it with dummy data\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "QG Model in spherical harmonics",
    "version": "1.0.1",
    "project_urls": {
        "Documentation": "https://pyshqg.readthedocs.io",
        "Issues": "https://github.com/cerea-daml/pyshqg/issues",
        "Source": "https://github.com/cerea-daml/pyshqg"
    },
    "split_keywords": [
        "quasi-geostrophic",
        "numerical model",
        "atmosphere",
        "spherical harmonics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "df7ca130c9cc54f044b166fe698cdc6ecc7f1f33d2d295e61221d5c2910f42ea",
                "md5": "b12b440029c28a1376ff596e4c72caf5",
                "sha256": "1fdc32ad22ccd5940e94ab834cd4e90b676e9fbd5aa448e04b324090d44c9fda"
            },
            "downloads": -1,
            "filename": "pyshqg-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b12b440029c28a1376ff596e4c72caf5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 32526764,
            "upload_time": "2024-03-13T11:23:04",
            "upload_time_iso_8601": "2024-03-13T11:23:04.610640Z",
            "url": "https://files.pythonhosted.org/packages/df/7c/a130c9cc54f044b166fe698cdc6ecc7f1f33d2d295e61221d5c2910f42ea/pyshqg-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "07b1220190e402ce57a39454b1f8932d01312963219dbf451802bd232d9d0e7b",
                "md5": "60a25f0fced5850b5658befbae37e3c0",
                "sha256": "07c849b64cf351de5cf8b8afc946fd30741304bfc54d744aae013c3b7be981f8"
            },
            "downloads": -1,
            "filename": "pyshqg-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "60a25f0fced5850b5658befbae37e3c0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 32536658,
            "upload_time": "2024-03-13T11:23:13",
            "upload_time_iso_8601": "2024-03-13T11:23:13.429170Z",
            "url": "https://files.pythonhosted.org/packages/07/b1/220190e402ce57a39454b1f8932d01312963219dbf451802bd232d9d0e7b/pyshqg-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-13 11:23:13",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "cerea-daml",
    "github_project": "pyshqg",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "pyshqg"
}
        
Elapsed time: 1.34544s