pysodmetrics


Namepysodmetrics JSON
Version 1.4.2 PyPI version JSON
download
home_pagehttps://github.com/lartpang/PySODMetrics
SummaryA simple and efficient implementation of SOD metrics.
upload_time2024-01-16 07:44:36
maintainer
docs_urlNone
authorlartpang
requires_python
licenseMIT
keywords salient object detection saliency detection metric deep learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
  <img src="https://github.com/lartpang/PySODMetrics/blob/main/images/logo.png?raw=true" alt="Logo" width="320" height="auto">
  </br>
  <h2>PySODMetrics: A simple and efficient implementation of SOD metrics</h2>
  <a href="./readme_zh.md"><img src="https://img.shields.io/badge/README-%E4%B8%AD%E6%96%87-blue"></a>
  <img src="https://img.shields.io/pypi/v/pysodmetrics">
  <img src="https://img.shields.io/pypi/dm/pysodmetrics?label=pypi%20downloads&logo=PyPI&logoColor=white">
  <img src="https://img.shields.io/github/last-commit/lartpang/PySODMetrics">
  <img src="https://img.shields.io/github/last-commit/lartpang/PySODMetrics">
  <img src="https://img.shields.io/github/release-date/lartpang/PySODMetrics">
</div>

## Introduction

A simple and efficient implementation of SOD metrics.

- Based on `numpy` and `scipy`
- Verification based on Fan's matlab code <https://github.com/DengPingFan/CODToolbox>
- The code structure is simple and easy to extend
- The code is lightweight and fast

Your improvements and suggestions are welcome.

### Related Projects

- [PySODEvalToolkit](https://github.com/lartpang/PySODEvalToolkit): A Python-based Evaluation Toolbox for Salient Object Detection and Camouflaged Object Detection

### Supported Metrics

| Metric                                    | Sample-based    | Whole-based | Related Class                         |
| ----------------------------------------- | --------------- | ----------- | ------------------------------------- |
| MAE                                       | soft            |             | `MAE`                                 |
| S-measure $S_{m}$                         | soft            |             | `Smeasure`                            |
| weighted F-measure ($F^{\omega}_{\beta}$) | soft            |             | `WeightedFmeasure`                    |
| Multi-Scale IoU                           | bin             |             | `MSIoU`                               |
| E-measure ($E_{m}$)                       | max,avg,adp     |             | `Emeasure`                            |
| F-measure (old) ($F_{beta}$)              | max,avg,adp     |             | `Fmeasure`                            |
| F-measure (new) ($F_{beta}$, $F_{1}$)     | max,avg,adp,bin | bin         | `FmeasureV2`+`FmeasureHandler`        |
| BER                                       | max,avg,adp,bin | bin         | `FmeasureV2`+`BERHandler`             |
| Dice                                      | max,avg,adp,bin | bin         | `FmeasureV2`+`DICEHandler`            |
| FPR                                       | max,avg,adp,bin | bin         | `FmeasureV2`+`FPRHandler`             |
| IoU                                       | max,avg,adp,bin | bin         | `FmeasureV2`+`IOUHandler`             |
| Kappa                                     | max,avg,adp,bin | bin         | `FmeasureV2`+`KappaHandler`           |
| Overall Accuracy                          | max,avg,adp,bin | bin         | `FmeasureV2`+`OverallAccuracyHandler` |
| Precision                                 | max,avg,adp,bin | bin         | `FmeasureV2`+`PrecisionHandler`       |
| Recall                                    | max,avg,adp,bin | bin         | `FmeasureV2`+`RecallHandler`          |
| Sensitivity                               | max,avg,adp,bin | bin         | `FmeasureV2`+`SensitivityHandler`     |
| Specificity                               | max,avg,adp,bin | bin         | `FmeasureV2`+`SpecificityHandler`     |
| TNR                                       | max,avg,adp,bin | bin         | `FmeasureV2`+`TNRHandler`             |
| TPR                                       | max,avg,adp,bin | bin         | `FmeasureV2`+`TPRHandler`             |

## Usage

The core files are in the folder `py_sod_metrics`.

- **[Latest, but may be unstable]** Install from the source code: `pip install git+https://github.com/lartpang/PySODMetrics.git`
- **[More stable]** Install from PyPI: `pip install pysodmetrics`

### Examples

- [examples/test_metrics.py](./examples/test_metrics.py)
- [examples/metric_recorder.py](./examples/metric_recorder.py)

## Reference

- [Matlab Code](https://github.com/DengPingFan/CODToolbox) by DengPingFan(<https://github.com/DengPingFan>): In our comparison (the test code can be seen under the `test` folder), the result is consistent with the code.
  - The matlab code needs to change `Bi_sal(sal>threshold)=1;` to `Bi_sal(sal>=threshold)=1;` in <https://github.com/DengPingFan/CODToolbox/blob/910358910c7824a4237b0ea689ac9d19d1958d11/Onekey_Evaluation_Code/OnekeyEvaluationCode/main.m#L102>. For related discussion, please see [the issue](https://github.com/DengPingFan/CODToolbox/issues/1).
  - 2021-12-20 (version `1.3.0`): Due to the difference between numpy and matlab, in version `1.2.x`, there are very slight differences on some metrics between the results of the matlab code and ours. The [recent PR](https://github.com/lartpang/PySODMetrics/pull/3) alleviated this problem. However, there are still very small differences on E-measure. The results in most papers are rounded off to three or four significant figures, so, there is no obvious difference between the new version and the version `1.2.x` for them.
- <https://en.wikipedia.org/wiki/Precision_and_recall>

```text
@inproceedings{Fmeasure,
    title={Frequency-tuned salient region detection},
    author={Achanta, Radhakrishna and Hemami, Sheila and Estrada, Francisco and S{\"u}sstrunk, Sabine},
    booktitle=CVPR,
    number={CONF},
    pages={1597--1604},
    year={2009}
}

@inproceedings{MAE,
    title={Saliency filters: Contrast based filtering for salient region detection},
    author={Perazzi, Federico and Kr{\"a}henb{\"u}hl, Philipp and Pritch, Yael and Hornung, Alexander},
    booktitle=CVPR,
    pages={733--740},
    year={2012}
}

@inproceedings{Smeasure,
    title={Structure-measure: A new way to evaluate foreground maps},
    author={Fan, Deng-Ping and Cheng, Ming-Ming and Liu, Yun and Li, Tao and Borji, Ali},
    booktitle=ICCV,
    pages={4548--4557},
    year={2017}
}

@inproceedings{Emeasure,
    title="Enhanced-alignment Measure for Binary Foreground Map Evaluation",
    author="Deng-Ping {Fan} and Cheng {Gong} and Yang {Cao} and Bo {Ren} and Ming-Ming {Cheng} and Ali {Borji}",
    booktitle=IJCAI,
    pages="698--704",
    year={2018}
}

@inproceedings{wFmeasure,
  title={How to evaluate foreground maps?},
  author={Margolin, Ran and Zelnik-Manor, Lihi and Tal, Ayellet},
  booktitle=CVPR,
  pages={248--255},
  year={2014}
}

@inproceedings{MSIoU,
    title = {Multiscale IOU: A Metric for Evaluation of Salient Object Detection with Fine Structures},
    author = {Ahmadzadeh, Azim and Kempton, Dustin J. and Chen, Yang and Angryk, Rafal A.},
    booktitle = ICIP,
    year = {2021},
}
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/lartpang/PySODMetrics",
    "name": "pysodmetrics",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "salient object detection,saliency detection,metric,deep learning",
    "author": "lartpang",
    "author_email": "lartpang@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/21/69/3d63f26b1e35f9a81473ce21810068698f8585e9e426814b46c05fb263ca/pysodmetrics-1.4.2.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n  <img src=\"https://github.com/lartpang/PySODMetrics/blob/main/images/logo.png?raw=true\" alt=\"Logo\" width=\"320\" height=\"auto\">\n  </br>\n  <h2>PySODMetrics: A simple and efficient implementation of SOD metrics</h2>\n  <a href=\"./readme_zh.md\"><img src=\"https://img.shields.io/badge/README-%E4%B8%AD%E6%96%87-blue\"></a>\n  <img src=\"https://img.shields.io/pypi/v/pysodmetrics\">\n  <img src=\"https://img.shields.io/pypi/dm/pysodmetrics?label=pypi%20downloads&logo=PyPI&logoColor=white\">\n  <img src=\"https://img.shields.io/github/last-commit/lartpang/PySODMetrics\">\n  <img src=\"https://img.shields.io/github/last-commit/lartpang/PySODMetrics\">\n  <img src=\"https://img.shields.io/github/release-date/lartpang/PySODMetrics\">\n</div>\n\n## Introduction\n\nA simple and efficient implementation of SOD metrics.\n\n- Based on `numpy` and `scipy`\n- Verification based on Fan's matlab code <https://github.com/DengPingFan/CODToolbox>\n- The code structure is simple and easy to extend\n- The code is lightweight and fast\n\nYour improvements and suggestions are welcome.\n\n### Related Projects\n\n- [PySODEvalToolkit](https://github.com/lartpang/PySODEvalToolkit): A Python-based Evaluation Toolbox for Salient Object Detection and Camouflaged Object Detection\n\n### Supported Metrics\n\n| Metric                                    | Sample-based    | Whole-based | Related Class                         |\n| ----------------------------------------- | --------------- | ----------- | ------------------------------------- |\n| MAE                                       | soft            |             | `MAE`                                 |\n| S-measure $S_{m}$                         | soft            |             | `Smeasure`                            |\n| weighted F-measure ($F^{\\omega}_{\\beta}$) | soft            |             | `WeightedFmeasure`                    |\n| Multi-Scale IoU                           | bin             |             | `MSIoU`                               |\n| E-measure ($E_{m}$)                       | max,avg,adp     |             | `Emeasure`                            |\n| F-measure (old) ($F_{beta}$)              | max,avg,adp     |             | `Fmeasure`                            |\n| F-measure (new) ($F_{beta}$, $F_{1}$)     | max,avg,adp,bin | bin         | `FmeasureV2`+`FmeasureHandler`        |\n| BER                                       | max,avg,adp,bin | bin         | `FmeasureV2`+`BERHandler`             |\n| Dice                                      | max,avg,adp,bin | bin         | `FmeasureV2`+`DICEHandler`            |\n| FPR                                       | max,avg,adp,bin | bin         | `FmeasureV2`+`FPRHandler`             |\n| IoU                                       | max,avg,adp,bin | bin         | `FmeasureV2`+`IOUHandler`             |\n| Kappa                                     | max,avg,adp,bin | bin         | `FmeasureV2`+`KappaHandler`           |\n| Overall Accuracy                          | max,avg,adp,bin | bin         | `FmeasureV2`+`OverallAccuracyHandler` |\n| Precision                                 | max,avg,adp,bin | bin         | `FmeasureV2`+`PrecisionHandler`       |\n| Recall                                    | max,avg,adp,bin | bin         | `FmeasureV2`+`RecallHandler`          |\n| Sensitivity                               | max,avg,adp,bin | bin         | `FmeasureV2`+`SensitivityHandler`     |\n| Specificity                               | max,avg,adp,bin | bin         | `FmeasureV2`+`SpecificityHandler`     |\n| TNR                                       | max,avg,adp,bin | bin         | `FmeasureV2`+`TNRHandler`             |\n| TPR                                       | max,avg,adp,bin | bin         | `FmeasureV2`+`TPRHandler`             |\n\n## Usage\n\nThe core files are in the folder `py_sod_metrics`.\n\n- **[Latest, but may be unstable]** Install from the source code: `pip install git+https://github.com/lartpang/PySODMetrics.git`\n- **[More stable]** Install from PyPI: `pip install pysodmetrics`\n\n### Examples\n\n- [examples/test_metrics.py](./examples/test_metrics.py)\n- [examples/metric_recorder.py](./examples/metric_recorder.py)\n\n## Reference\n\n- [Matlab Code](https://github.com/DengPingFan/CODToolbox) by DengPingFan(<https://github.com/DengPingFan>): In our comparison (the test code can be seen under the `test` folder), the result is consistent with the code.\n  - The matlab code needs to change `Bi_sal(sal>threshold)=1;` to `Bi_sal(sal>=threshold)=1;` in <https://github.com/DengPingFan/CODToolbox/blob/910358910c7824a4237b0ea689ac9d19d1958d11/Onekey_Evaluation_Code/OnekeyEvaluationCode/main.m#L102>. For related discussion, please see [the issue](https://github.com/DengPingFan/CODToolbox/issues/1).\n  - 2021-12-20 (version `1.3.0`): Due to the difference between numpy and matlab, in version `1.2.x`, there are very slight differences on some metrics between the results of the matlab code and ours. The [recent PR](https://github.com/lartpang/PySODMetrics/pull/3) alleviated this problem. However, there are still very small differences on E-measure. The results in most papers are rounded off to three or four significant figures, so, there is no obvious difference between the new version and the version `1.2.x` for them.\n- <https://en.wikipedia.org/wiki/Precision_and_recall>\n\n```text\n@inproceedings{Fmeasure,\n    title={Frequency-tuned salient region detection},\n    author={Achanta, Radhakrishna and Hemami, Sheila and Estrada, Francisco and S{\\\"u}sstrunk, Sabine},\n    booktitle=CVPR,\n    number={CONF},\n    pages={1597--1604},\n    year={2009}\n}\n\n@inproceedings{MAE,\n    title={Saliency filters: Contrast based filtering for salient region detection},\n    author={Perazzi, Federico and Kr{\\\"a}henb{\\\"u}hl, Philipp and Pritch, Yael and Hornung, Alexander},\n    booktitle=CVPR,\n    pages={733--740},\n    year={2012}\n}\n\n@inproceedings{Smeasure,\n    title={Structure-measure: A new way to evaluate foreground maps},\n    author={Fan, Deng-Ping and Cheng, Ming-Ming and Liu, Yun and Li, Tao and Borji, Ali},\n    booktitle=ICCV,\n    pages={4548--4557},\n    year={2017}\n}\n\n@inproceedings{Emeasure,\n    title=\"Enhanced-alignment Measure for Binary Foreground Map Evaluation\",\n    author=\"Deng-Ping {Fan} and Cheng {Gong} and Yang {Cao} and Bo {Ren} and Ming-Ming {Cheng} and Ali {Borji}\",\n    booktitle=IJCAI,\n    pages=\"698--704\",\n    year={2018}\n}\n\n@inproceedings{wFmeasure,\n  title={How to evaluate foreground maps?},\n  author={Margolin, Ran and Zelnik-Manor, Lihi and Tal, Ayellet},\n  booktitle=CVPR,\n  pages={248--255},\n  year={2014}\n}\n\n@inproceedings{MSIoU,\n    title = {Multiscale IOU: A Metric for Evaluation of Salient Object Detection with Fine Structures},\n    author = {Ahmadzadeh, Azim and Kempton, Dustin J. and Chen, Yang and Angryk, Rafal A.},\n    booktitle = ICIP,\n    year = {2021},\n}\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A simple and efficient implementation of SOD metrics.",
    "version": "1.4.2",
    "project_urls": {
        "Homepage": "https://github.com/lartpang/PySODMetrics"
    },
    "split_keywords": [
        "salient object detection",
        "saliency detection",
        "metric",
        "deep learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1ad6f947e0354970c29eff0995effa378fdd1b9dffd1eff01acdac1e030ae196",
                "md5": "07d94568d4f9a23379704604376c5532",
                "sha256": "ef591420845f652cd83c4fc60a89747caa860b45e9457c88c0e51d39d656bd5d"
            },
            "downloads": -1,
            "filename": "pysodmetrics-1.4.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "07d94568d4f9a23379704604376c5532",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 16106,
            "upload_time": "2024-01-16T07:44:35",
            "upload_time_iso_8601": "2024-01-16T07:44:35.520710Z",
            "url": "https://files.pythonhosted.org/packages/1a/d6/f947e0354970c29eff0995effa378fdd1b9dffd1eff01acdac1e030ae196/pysodmetrics-1.4.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "21693d63f26b1e35f9a81473ce21810068698f8585e9e426814b46c05fb263ca",
                "md5": "bb7730428e5be0e3ba66ffe312ba884a",
                "sha256": "e49f77bc4b62ffd6ba548967795907b3e5704932dc8452a4dc0116b1b45733a8"
            },
            "downloads": -1,
            "filename": "pysodmetrics-1.4.2.tar.gz",
            "has_sig": false,
            "md5_digest": "bb7730428e5be0e3ba66ffe312ba884a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 16591,
            "upload_time": "2024-01-16T07:44:36",
            "upload_time_iso_8601": "2024-01-16T07:44:36.573474Z",
            "url": "https://files.pythonhosted.org/packages/21/69/3d63f26b1e35f9a81473ce21810068698f8585e9e426814b46c05fb263ca/pysodmetrics-1.4.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-16 07:44:36",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "lartpang",
    "github_project": "PySODMetrics",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "pysodmetrics"
}
        
Elapsed time: 2.77743s