pyterrier-pisa


Namepyterrier-pisa JSON
Version 0.2.1 PyPI version JSON
download
home_pageNone
SummaryA PyTerrier interface to the PISA search engine
upload_time2024-12-05 08:26:42
maintainerNone
docs_urlNone
authorSean MacAvaney
requires_python>=3.8
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # PyTerrier PISA

[PyTerrier](https://github.com/terrier-org/pyterrier) bindings for the [PISA](https://github.com/pisa-engine/pisa) search engine.

Interactive Colab Demo: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/terrierteam/pyterrier_pisa/blob/master/examples/pyterrier_pisa_antique.ipynb)

## Getting Started

These bindings are only available for cpython 3.8-3.11 on `manylinux2010_x86_64` platforms. They can be installed via pip:

```bash
pip install pyterrier_pisa
```

## Indexing

You can easily index corpora from PyTerrier datasets:

```python
import pyterrier as pt
from pyterrier_pisa import PisaIndex

# from a dataset
dataset = pt.get_dataset('irds:msmarco-passage')
index = PisaIndex('./msmarco-passage-pisa')
index.index(dataset.get_corpus_iter())
```

You can also select which text field(s) to index. If not specified, all fields of type `str` will be indexed.

```python
dataset = pt.get_dataset('irds:cord19')
index = PisaIndex('./cord19-pisa', text_field=['title', 'abstract'])
index.index(dataset.get_corpus_iter())
```

`PisaIndex` accepts various other options to configure the indexing process. Most notable are:
 - `stemmer`: Which stemmer to use? Options: `porter2` (default), `krovetz`, `none`
 - `threads`: How many threads to use for indexing? Default: `8`
 - `index_encoding`: Which index encoding to use. Default: `block_simdbp`
 - `stops`: Which set of stopwords to use. Default: `terrier`.


```python
# E.g.,
index = PisaIndex('./cord19-pisa', stemmer='krovetz', threads=32)
```

For some collections you can download pre-built indices from [data.terrier.org](http://data.terrier.org/). PISA indices are prefixed with `pisa_`.

```python
index = PisaIndex.from_dataset('trec-covid')
```

## Retrieval

From an index, you can build retrieval transformers:

```python
dph = index.dph()
bm25 = index.bm25(k1=1.2, b=0.4)
pl2 = index.pl2(c=1.0)
qld = index.qld(mu=1000.)
```

These retrievers support all the typical pipeline operations.

Search:

```python
bm25.search('covid symptoms')
#     qid           query     docno     score
# 0     1  covid symptoms  a6avr09j  6.273450
# 1     1  covid symptoms  hdxs9dgu  6.272374
# 2     1  covid symptoms  zxq7dl9t  6.272374
# ..   ..             ...       ...       ...
# 999   1  covid symptoms  m8wggdc7  4.690651
```

Batch retrieval:

```python
print(dph(dataset.get_topics('title')))
#       qid                     query     docno     score
# 0       1        coronavirus origin  8ccl9aui  9.329109
# 1       1        coronavirus origin  es7q6c90  9.260190
# 2       1        coronavirus origin  8l411r1w  8.862670
# ...    ..                       ...       ...       ...
# 49999  50  mrna vaccine coronavirus  eyitkr3s  5.610429
```

Experiment:

```python
from pyterrier.measures import *
pt.Experiment(
  [dph, bm25, pl2, qld],
  dataset.get_topics('title'),
  dataset.get_qrels(),
  [nDCG@10, P@5, P(rel=2)@5, 'mrt'],
  names=['dph', 'bm25', 'pl2', 'qld']
)
#    name   nDCG@10    P@5  P(rel=2)@5       mrt
# 0   dph  0.623450  0.720       0.548  1.101846
# 1  bm25  0.624923  0.728       0.572  0.880318
# 2   pl2  0.536506  0.632       0.456  1.123883
# 3   qld  0.570032  0.676       0.504  0.974924
```

You can also build a retrieval transformer from `PisaRetrieve`:

```python
from pyterrier_pisa import PisaRetrieve
# from index path:
bm25 = PisaRetrieve('./cord19-pisa', scorer='bm25', bm25_k1=1.2, bm25_b=0.4)
# from dataset
bm25 = PisaRetrieve.from_dataset('trec-covid', 'pisa_unstemmed', scorer='bm25', bm25_k1=1.2, bm25_b=0.4)
```

## Extras

You can access PISA's tokenizer and stemmers using the `tokenize` function:

```python
import pyterrier_pisa
pyterrier_pisa.tokenize('hello worlds!')
# ['hello', 'worlds']
pyterrier_pisa.tokenize('hello worlds!', stemmer='porter2')
# ['hello', 'world']
```

## FAQ

**What retrieval functions are supported?**

 - `"dph"`. Parameters: (none)
 - `"bm25"`. Parameters: `k1`, `b`
 - `"pl2"`. Parameters: `c`
 - `"qld"`. Parameters: `mu`

**How do I index [some other type of data]?**

`PisaIndex` accepts an iterator over dicts, each of which containing a `docno` field and a `text` field. All you need to do is coerce the data into that
format and you're set.

Examples:

```python
# any iterator
def iter_docs():
  for i in range(100):
    yield {'docno': str(i), 'text': f'document {i}'}
index = PisaIndex('./dummy-pisa')
index.index(iter_docs())

# from a dataframe
import pandas as pd
docs = pd.DataFrame([
  ('1', 'test doc'),
  ('2', 'another doc'),
], columns=['docno', 'text'])
index = PisaIndex('./dummy-pisa-2')
index.index(docs.to_dict(orient="records"))
```

**Can I build a doc2query index?**

You can use `PisaIndex` with any document rewriter, such as doc2query or DeepCT.
All you need to do is build an indexing pipeline. For example:

```bash
pip install --upgrade git+https://github.com/terrierteam/pyterrier_doc2query.git
wget https://git.uwaterloo.ca/jimmylin/doc2query-data/raw/master/T5-passage/t5-base.zip
unzip t5-base.zip
```

```python
doc2query = Doc2Query(out_attr="exp_terms", batch_size=8)
dataset = pt.get_dataset('irds:vaswani')
index = PisaIndex('./vaswani-doc2query-pisa')
index_pipeline = doc2query >> pt.apply.text(lambda r: f'{r["text"]} {r["exp_terms"]}') >> index
index_pipeline.index(dataset.get_corpus_iter())
```

**Can I build a learned sparse retrieval (e.g., SPLADE) index?**

Yes! Example:

```python
import pyt_splade
splade = pyt_splade.Splade()
dataset = pt.get_dataset('irds:msmarco-passage')
index = PisaIndex('./msmarco-passage-splade', stemmer='none')

# indexing
idx_pipeline = splade.doc_encoder() >> index.toks_indexer()
idx_pipeline.index(dataset.get_corpus_iter())

# retrieval

retr_pipeline = splade.query_encoder() >> index.quantized()
```

`msmarco-passage/trec-dl-2019` effectiveness for `naver/splade-cocondenser-ensembledistil`:

| System | nDCG@10 | R(rel=2)@1000 |
|--------|---------|---------------|
| PISA   | 0.731   |         0.872 |
| [From Paper](https://arxiv.org/pdf/2205.04733.pdf) | 0.732 | 0.875 |


**What are the supported index encodings and query algorithms?**

Right now we support the following index encodings: `ef`, `single`, `pefuniform`, `pefopt`, `block_optpfor`, `block_varintg8iu`, `block_streamvbyte`, `block_maskedvbyte`, `block_interpolative`, `block_qmx`, `block_varintgb`, `block_simple8b`, `block_simple16`, `block_simdbp`.

Index encodings are supplied when a `PisaIndex` is constructed:

```python
index = PisaIndex('./cord19-pisa', index_encoding='ef')
```

We support the following query algorithms: `wand`, `block_max_wand`, `block_max_maxscore`, `block_max_ranked_and`, `ranked_and`, `ranked_or`, `maxscore`.

Query algorithms are supplied when you construct a retrieval transformer:

```python
index.bm25(query_algorithm='ranked_and')
```

**Can I import/export from [CIFF](https://github.com/osirrc/ciff)?**

Yes! Using `.from_ciff(ciff_file, index_path)` and `.to_ciff(ciff_file)`

```python
# from a CIFF export:
index = PisaIndex.from_ciff('path/to/something.ciff', 'path/to/index.pisa', stemmer='krovetz') # stemmer is optional
# to a CIFF export:
index.to_ciff('path/to/something.ciff')
```

Note that you need to be careful to set stemmer to match whatever was used when constructing the index; CIFF does not directly store which stemmer
was used when building the index. If it's a stemmer that's not supported by PISA, you can set `stemmer='none'` and apply stemming in a PyTerrier pipeline.

## References

 - [Mallia19]: Antonio Mallia, Michal Siedlaczek, Joel Mackenzie, Torsten Suel. PISA: Performant Indexes and Search for Academia. Proceedings of the Open-Source IR Replicability Challenge. http://ceur-ws.org/Vol-2409/docker08.pdf
 - [MacAvaney22]: Sean MacAvaney, Craig Macdonald. A Python Interface to PISA!. Proceedings of SIGIR 2022. https://dl.acm.org/doi/abs/10.1145/3477495.3531656
 - [Macdonald21]: Craig Macdonald, Nicola Tonellotto, Sean MacAvaney, Iadh Ounis. PyTerrier: Declarative Experimentation in Python from BM25 to Dense Retrieval. Proceedings of CIKM 2021. https://dl.acm.org/doi/abs/10.1145/3459637.3482013

## Credits

 - Sean MacAvaney, University of Glasgow
 - Craig Macdonald, University of Glasgow

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "pyterrier-pisa",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": null,
    "author": "Sean MacAvaney",
    "author_email": null,
    "download_url": null,
    "platform": null,
    "description": "# PyTerrier PISA\n\n[PyTerrier](https://github.com/terrier-org/pyterrier) bindings for the [PISA](https://github.com/pisa-engine/pisa) search engine.\n\nInteractive Colab Demo: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/terrierteam/pyterrier_pisa/blob/master/examples/pyterrier_pisa_antique.ipynb)\n\n## Getting Started\n\nThese bindings are only available for cpython 3.8-3.11 on `manylinux2010_x86_64` platforms. They can be installed via pip:\n\n```bash\npip install pyterrier_pisa\n```\n\n## Indexing\n\nYou can easily index corpora from PyTerrier datasets:\n\n```python\nimport pyterrier as pt\nfrom pyterrier_pisa import PisaIndex\n\n# from a dataset\ndataset = pt.get_dataset('irds:msmarco-passage')\nindex = PisaIndex('./msmarco-passage-pisa')\nindex.index(dataset.get_corpus_iter())\n```\n\nYou can also select which text field(s) to index. If not specified, all fields of type `str` will be indexed.\n\n```python\ndataset = pt.get_dataset('irds:cord19')\nindex = PisaIndex('./cord19-pisa', text_field=['title', 'abstract'])\nindex.index(dataset.get_corpus_iter())\n```\n\n`PisaIndex` accepts various other options to configure the indexing process. Most notable are:\n - `stemmer`: Which stemmer to use? Options: `porter2` (default), `krovetz`, `none`\n - `threads`: How many threads to use for indexing? Default: `8`\n - `index_encoding`: Which index encoding to use. Default: `block_simdbp`\n - `stops`: Which set of stopwords to use. Default: `terrier`.\n\n\n```python\n# E.g.,\nindex = PisaIndex('./cord19-pisa', stemmer='krovetz', threads=32)\n```\n\nFor some collections you can download pre-built indices from [data.terrier.org](http://data.terrier.org/). PISA indices are prefixed with `pisa_`.\n\n```python\nindex = PisaIndex.from_dataset('trec-covid')\n```\n\n## Retrieval\n\nFrom an index, you can build retrieval transformers:\n\n```python\ndph = index.dph()\nbm25 = index.bm25(k1=1.2, b=0.4)\npl2 = index.pl2(c=1.0)\nqld = index.qld(mu=1000.)\n```\n\nThese retrievers support all the typical pipeline operations.\n\nSearch:\n\n```python\nbm25.search('covid symptoms')\n#     qid           query     docno     score\n# 0     1  covid symptoms  a6avr09j  6.273450\n# 1     1  covid symptoms  hdxs9dgu  6.272374\n# 2     1  covid symptoms  zxq7dl9t  6.272374\n# ..   ..             ...       ...       ...\n# 999   1  covid symptoms  m8wggdc7  4.690651\n```\n\nBatch retrieval:\n\n```python\nprint(dph(dataset.get_topics('title')))\n#       qid                     query     docno     score\n# 0       1        coronavirus origin  8ccl9aui  9.329109\n# 1       1        coronavirus origin  es7q6c90  9.260190\n# 2       1        coronavirus origin  8l411r1w  8.862670\n# ...    ..                       ...       ...       ...\n# 49999  50  mrna vaccine coronavirus  eyitkr3s  5.610429\n```\n\nExperiment:\n\n```python\nfrom pyterrier.measures import *\npt.Experiment(\n  [dph, bm25, pl2, qld],\n  dataset.get_topics('title'),\n  dataset.get_qrels(),\n  [nDCG@10, P@5, P(rel=2)@5, 'mrt'],\n  names=['dph', 'bm25', 'pl2', 'qld']\n)\n#    name   nDCG@10    P@5  P(rel=2)@5       mrt\n# 0   dph  0.623450  0.720       0.548  1.101846\n# 1  bm25  0.624923  0.728       0.572  0.880318\n# 2   pl2  0.536506  0.632       0.456  1.123883\n# 3   qld  0.570032  0.676       0.504  0.974924\n```\n\nYou can also build a retrieval transformer from `PisaRetrieve`:\n\n```python\nfrom pyterrier_pisa import PisaRetrieve\n# from index path:\nbm25 = PisaRetrieve('./cord19-pisa', scorer='bm25', bm25_k1=1.2, bm25_b=0.4)\n# from dataset\nbm25 = PisaRetrieve.from_dataset('trec-covid', 'pisa_unstemmed', scorer='bm25', bm25_k1=1.2, bm25_b=0.4)\n```\n\n## Extras\n\nYou can access PISA's tokenizer and stemmers using the `tokenize` function:\n\n```python\nimport pyterrier_pisa\npyterrier_pisa.tokenize('hello worlds!')\n# ['hello', 'worlds']\npyterrier_pisa.tokenize('hello worlds!', stemmer='porter2')\n# ['hello', 'world']\n```\n\n## FAQ\n\n**What retrieval functions are supported?**\n\n - `\"dph\"`. Parameters: (none)\n - `\"bm25\"`. Parameters: `k1`, `b`\n - `\"pl2\"`. Parameters: `c`\n - `\"qld\"`. Parameters: `mu`\n\n**How do I index [some other type of data]?**\n\n`PisaIndex` accepts an iterator over dicts, each of which containing a `docno` field and a `text` field. All you need to do is coerce the data into that\nformat and you're set.\n\nExamples:\n\n```python\n# any iterator\ndef iter_docs():\n  for i in range(100):\n    yield {'docno': str(i), 'text': f'document {i}'}\nindex = PisaIndex('./dummy-pisa')\nindex.index(iter_docs())\n\n# from a dataframe\nimport pandas as pd\ndocs = pd.DataFrame([\n  ('1', 'test doc'),\n  ('2', 'another doc'),\n], columns=['docno', 'text'])\nindex = PisaIndex('./dummy-pisa-2')\nindex.index(docs.to_dict(orient=\"records\"))\n```\n\n**Can I build a doc2query index?**\n\nYou can use `PisaIndex` with any document rewriter, such as doc2query or DeepCT.\nAll you need to do is build an indexing pipeline. For example:\n\n```bash\npip install --upgrade git+https://github.com/terrierteam/pyterrier_doc2query.git\nwget https://git.uwaterloo.ca/jimmylin/doc2query-data/raw/master/T5-passage/t5-base.zip\nunzip t5-base.zip\n```\n\n```python\ndoc2query = Doc2Query(out_attr=\"exp_terms\", batch_size=8)\ndataset = pt.get_dataset('irds:vaswani')\nindex = PisaIndex('./vaswani-doc2query-pisa')\nindex_pipeline = doc2query >> pt.apply.text(lambda r: f'{r[\"text\"]} {r[\"exp_terms\"]}') >> index\nindex_pipeline.index(dataset.get_corpus_iter())\n```\n\n**Can I build a learned sparse retrieval (e.g., SPLADE) index?**\n\nYes! Example:\n\n```python\nimport pyt_splade\nsplade = pyt_splade.Splade()\ndataset = pt.get_dataset('irds:msmarco-passage')\nindex = PisaIndex('./msmarco-passage-splade', stemmer='none')\n\n# indexing\nidx_pipeline = splade.doc_encoder() >> index.toks_indexer()\nidx_pipeline.index(dataset.get_corpus_iter())\n\n# retrieval\n\nretr_pipeline = splade.query_encoder() >> index.quantized()\n```\n\n`msmarco-passage/trec-dl-2019` effectiveness for `naver/splade-cocondenser-ensembledistil`:\n\n| System | nDCG@10 | R(rel=2)@1000 |\n|--------|---------|---------------|\n| PISA   | 0.731   |         0.872 |\n| [From Paper](https://arxiv.org/pdf/2205.04733.pdf) | 0.732 | 0.875 |\n\n\n**What are the supported index encodings and query algorithms?**\n\nRight now we support the following index encodings: `ef`, `single`, `pefuniform`, `pefopt`, `block_optpfor`, `block_varintg8iu`, `block_streamvbyte`, `block_maskedvbyte`, `block_interpolative`, `block_qmx`, `block_varintgb`, `block_simple8b`, `block_simple16`, `block_simdbp`.\n\nIndex encodings are supplied when a `PisaIndex` is constructed:\n\n```python\nindex = PisaIndex('./cord19-pisa', index_encoding='ef')\n```\n\nWe support the following query algorithms: `wand`, `block_max_wand`, `block_max_maxscore`, `block_max_ranked_and`, `ranked_and`, `ranked_or`, `maxscore`.\n\nQuery algorithms are supplied when you construct a retrieval transformer:\n\n```python\nindex.bm25(query_algorithm='ranked_and')\n```\n\n**Can I import/export from [CIFF](https://github.com/osirrc/ciff)?**\n\nYes! Using `.from_ciff(ciff_file, index_path)` and `.to_ciff(ciff_file)`\n\n```python\n# from a CIFF export:\nindex = PisaIndex.from_ciff('path/to/something.ciff', 'path/to/index.pisa', stemmer='krovetz') # stemmer is optional\n# to a CIFF export:\nindex.to_ciff('path/to/something.ciff')\n```\n\nNote that you need to be careful to set stemmer to match whatever was used when constructing the index; CIFF does not directly store which stemmer\nwas used when building the index. If it's a stemmer that's not supported by PISA, you can set `stemmer='none'` and apply stemming in a PyTerrier pipeline.\n\n## References\n\n - [Mallia19]: Antonio Mallia, Michal Siedlaczek, Joel Mackenzie, Torsten Suel. PISA: Performant Indexes and Search for Academia. Proceedings of the Open-Source IR Replicability Challenge. http://ceur-ws.org/Vol-2409/docker08.pdf\n - [MacAvaney22]: Sean MacAvaney, Craig Macdonald. A Python Interface to PISA!. Proceedings of SIGIR 2022. https://dl.acm.org/doi/abs/10.1145/3477495.3531656\n - [Macdonald21]: Craig Macdonald, Nicola Tonellotto, Sean MacAvaney, Iadh Ounis. PyTerrier: Declarative Experimentation in Python from BM25 to Dense Retrieval. Proceedings of CIKM 2021. https://dl.acm.org/doi/abs/10.1145/3459637.3482013\n\n## Credits\n\n - Sean MacAvaney, University of Glasgow\n - Craig Macdonald, University of Glasgow\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A PyTerrier interface to the PISA search engine",
    "version": "0.2.1",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e2dd8e3b7fa43b587720cb95a1bfdc49198d7dc9e79c6a86c365775400d0d7e0",
                "md5": "17af11a014c2806b581c2e2a9a655f6d",
                "sha256": "fddc601dcb7a5c29ff93cc0e4357f43ec29c1849d95ebb6f13c3f7a5cc3f8c1e"
            },
            "downloads": -1,
            "filename": "pyterrier_pisa-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "17af11a014c2806b581c2e2a9a655f6d",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.8",
            "size": 4075973,
            "upload_time": "2024-12-05T08:26:42",
            "upload_time_iso_8601": "2024-12-05T08:26:42.238939Z",
            "url": "https://files.pythonhosted.org/packages/e2/dd/8e3b7fa43b587720cb95a1bfdc49198d7dc9e79c6a86c365775400d0d7e0/pyterrier_pisa-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d371c0c86bd440bcea5335012d45b39b8e4db49328eb9ddf09ae2d8ca79c4481",
                "md5": "cb6183a44263397da98f562858e844e1",
                "sha256": "252b3e5eb2db6bdd226c3458060f529c8f8cb3a9381176ed32cb3bced633469c"
            },
            "downloads": -1,
            "filename": "pyterrier_pisa-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "cb6183a44263397da98f562858e844e1",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.8",
            "size": 4075977,
            "upload_time": "2024-12-05T08:26:44",
            "upload_time_iso_8601": "2024-12-05T08:26:44.376158Z",
            "url": "https://files.pythonhosted.org/packages/d3/71/c0c86bd440bcea5335012d45b39b8e4db49328eb9ddf09ae2d8ca79c4481/pyterrier_pisa-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d591576a57d42b8879ed5560275a66beef439b70555cd04c487120bd08c4c792",
                "md5": "3d8258337e8eb122ebe3f0b1b6a64a51",
                "sha256": "b7f24973ae5e0666e0839995188355d85fbf2523b4e2d23a699f4f80ddf23aa8"
            },
            "downloads": -1,
            "filename": "pyterrier_pisa-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "3d8258337e8eb122ebe3f0b1b6a64a51",
            "packagetype": "bdist_wheel",
            "python_version": "cp38",
            "requires_python": ">=3.8",
            "size": 4075965,
            "upload_time": "2024-12-05T08:26:46",
            "upload_time_iso_8601": "2024-12-05T08:26:46.278786Z",
            "url": "https://files.pythonhosted.org/packages/d5/91/576a57d42b8879ed5560275a66beef439b70555cd04c487120bd08c4c792/pyterrier_pisa-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "890601224edbcf5d513bb72b2451f44231e15b7771dea211464c45d3a765f3ee",
                "md5": "b1b4a644284195ae00ffef3ecaf77e67",
                "sha256": "0c933563bbb79003cdad78d864aca921ec85112abc9fbec66d3cb258238e3c20"
            },
            "downloads": -1,
            "filename": "pyterrier_pisa-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "b1b4a644284195ae00ffef3ecaf77e67",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.8",
            "size": 4075971,
            "upload_time": "2024-12-05T08:26:48",
            "upload_time_iso_8601": "2024-12-05T08:26:48.366010Z",
            "url": "https://files.pythonhosted.org/packages/89/06/01224edbcf5d513bb72b2451f44231e15b7771dea211464c45d3a765f3ee/pyterrier_pisa-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-05 08:26:42",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "pyterrier-pisa"
}
        
Elapsed time: 0.47790s