# pyterrier-services
PyTerrier components for online retrieval services.
## SemanticScholar
[Semantic Scholar](https://www.semanticscholar.org/me/research) is a scientific literature
search engine provided by the [Allen Institute for AI](https://allenai.org/).
`SemanticScholar()` provides access to the [search API](https://www.semanticscholar.org/product/api).
Example:
```python
>>> import pyterrier as pt ; pt.init()
>>> from pyterrier_services import SemanticScholar
>>> service = SemanticScholar()
>>> retriever = service.retriever()
>>> retriever.search('PyTerrier')
# qid query docno score rank title abstract
# 1 pyterrier 7fa92ed08eee68a945884b8744e7db9887aed9d3 0 0 PyTerrier: Declarative Experimentation in Pyth... PyTerrier is a Python-based retrieval framewor...
# 1 pyterrier a6b1126e058262c57d36012d0fdedc2417ad04e1 -1 1 Declarative Experimentation in Information Ret... The advent of deep machine learning platforms ...
# 1 pyterrier 833b453c621099bccca028752aaa74262123706a -2 2 PyTerrier-based Research Data Recommendations ... Research data is of high importance in scienti...
# 1 pyterrier 73feb5cfe491342d52d47e8817d113c072067306 -3 3 The Information Retrieval Experiment Platform We integrate irdatasets, ir_measures, and PyTe...
# 1 pyterrier 90b8a1adae2761e48c87fdeb68a595dc11161970 -4 4 QPPTK@TIREx: Simplified Query Performance Pred... We describe our software submission to the ECI...
# 1 pyterrier 6659b3daabfb7e8e6dd8c4f47e2a774816888a9d -5 5 Retrieving Comparative Arguments using Ensembl... In this paper, we present a submission to the ...
# 1 pyterrier 2e503f3c23384a2112c84986c0a38c9cf6bf2488 -6 6 The Information Retrieval Experiment Platform In this extended abstract, 1 we present the In...
# 1 pyterrier 4f901502b389e16faaf26eef7c935ecd80700f3d -7 7 The Information Retrieval Experiment Platform ... We have built TIREx, the information retrieval...
# 1 pyterrier 12c9b48d013255248378f23b7078e1788b5b1ef6 -8 8 Axiomatic Retrieval Experimentation with ir_ax... Axiomatic approaches to information retrieval ...
# 1 pyterrier b7da554d9f1f51e13a852ab0270dcd0d824c52e8 -9 9 A Python Interface to PISA! PISA (Performant Indexes and Search for Academ...
# 1 pyterrier e57c05d3eb9c2d32332dc539d32e78f2b1fb05a6 -10 10 University of Glasgow Terrier Team and UFMG at... For TREC 2020, we explore different re-ranking...
# 1 pyterrier 81ec8a40deb82470438d978b013a0f6094ec8843 -11 11 IR From Bag-of-words to BERT and Beyond throug... The task of adhoc search is undergoing a renai...
```
## Pinecone
[Pinecone](https://docs.pinecone.io/models/overview) provides a Hosted Inference API to various embedding
and reranking models. ``pyterrier-services`` provides access to dense, learned sparse, and re-ranking APIs through `pyterrier_services.PineconeApi`.
Raw data
{
"_id": null,
"home_page": null,
"name": "pyterrier-services",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": "Sean MacAvaney <sean.macavaney@glasgow.ac.uk>",
"keywords": null,
"author": null,
"author_email": "Sean MacAvaney <sean.macavaney@glasgow.ac.uk>",
"download_url": "https://files.pythonhosted.org/packages/94/e3/81ea29ceda175067ad7fc6f442a5cf82a938008b3698c1d52e33ca62900e/pyterrier_services-0.2.0.tar.gz",
"platform": null,
"description": "# pyterrier-services\n\nPyTerrier components for online retrieval services.\n\n## SemanticScholar\n\n[Semantic Scholar](https://www.semanticscholar.org/me/research) is a scientific literature\nsearch engine provided by the [Allen Institute for AI](https://allenai.org/).\n\n`SemanticScholar()` provides access to the [search API](https://www.semanticscholar.org/product/api).\n\nExample:\n\n```python\n>>> import pyterrier as pt ; pt.init()\n>>> from pyterrier_services import SemanticScholar\n>>> service = SemanticScholar()\n>>> retriever = service.retriever()\n>>> retriever.search('PyTerrier')\n# qid query docno score rank title abstract\n# 1 pyterrier 7fa92ed08eee68a945884b8744e7db9887aed9d3 0 0 PyTerrier: Declarative Experimentation in Pyth... PyTerrier is a Python-based retrieval framewor...\n# 1 pyterrier a6b1126e058262c57d36012d0fdedc2417ad04e1 -1 1 Declarative Experimentation in Information Ret... The advent of deep machine learning platforms ...\n# 1 pyterrier 833b453c621099bccca028752aaa74262123706a -2 2 PyTerrier-based Research Data Recommendations ... Research data is of high importance in scienti...\n# 1 pyterrier 73feb5cfe491342d52d47e8817d113c072067306 -3 3 The Information Retrieval Experiment Platform We integrate irdatasets, ir_measures, and PyTe...\n# 1 pyterrier 90b8a1adae2761e48c87fdeb68a595dc11161970 -4 4 QPPTK@TIREx: Simplified Query Performance Pred... We describe our software submission to the ECI...\n# 1 pyterrier 6659b3daabfb7e8e6dd8c4f47e2a774816888a9d -5 5 Retrieving Comparative Arguments using Ensembl... In this paper, we present a submission to the ...\n# 1 pyterrier 2e503f3c23384a2112c84986c0a38c9cf6bf2488 -6 6 The Information Retrieval Experiment Platform In this extended abstract, 1 we present the In...\n# 1 pyterrier 4f901502b389e16faaf26eef7c935ecd80700f3d -7 7 The Information Retrieval Experiment Platform ... We have built TIREx, the information retrieval...\n# 1 pyterrier 12c9b48d013255248378f23b7078e1788b5b1ef6 -8 8 Axiomatic Retrieval Experimentation with ir_ax... Axiomatic approaches to information retrieval ...\n# 1 pyterrier b7da554d9f1f51e13a852ab0270dcd0d824c52e8 -9 9 A Python Interface to PISA! PISA (Performant Indexes and Search for Academ...\n# 1 pyterrier e57c05d3eb9c2d32332dc539d32e78f2b1fb05a6 -10 10 University of Glasgow Terrier Team and UFMG at... For TREC 2020, we explore different re-ranking...\n# 1 pyterrier 81ec8a40deb82470438d978b013a0f6094ec8843 -11 11 IR From Bag-of-words to BERT and Beyond throug... The task of adhoc search is undergoing a renai...\n```\n\n## Pinecone\n\n[Pinecone](https://docs.pinecone.io/models/overview) provides a Hosted Inference API to various embedding\nand reranking models. ``pyterrier-services`` provides access to dense, learned sparse, and re-ranking APIs through `pyterrier_services.PineconeApi`.\n",
"bugtrack_url": null,
"license": null,
"summary": "PyTerrier components for API Services",
"version": "0.2.0",
"project_urls": {
"Bug Tracker": "https://github.com/seanmacavaney/pyterrier-services/issues",
"Repository": "https://github.com/seanmacavaney/pyterrier-services"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "9e5a60f72acfa14d124bbdb5c7af7bb9e9c5a96393c513f1399f7a5076c9b041",
"md5": "eb1b49ed812a5e55492570e087bf245d",
"sha256": "93eb3d1c8fb7f5a28cddf1e10cc00d4ba440bfad2e986737b02f390f266b29b8"
},
"downloads": -1,
"filename": "pyterrier_services-0.2.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "eb1b49ed812a5e55492570e087bf245d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 11156,
"upload_time": "2024-12-11T05:06:06",
"upload_time_iso_8601": "2024-12-11T05:06:06.687274Z",
"url": "https://files.pythonhosted.org/packages/9e/5a/60f72acfa14d124bbdb5c7af7bb9e9c5a96393c513f1399f7a5076c9b041/pyterrier_services-0.2.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "94e381ea29ceda175067ad7fc6f442a5cf82a938008b3698c1d52e33ca62900e",
"md5": "af74248ea06e1cc8b3166723b14f0693",
"sha256": "f3e5cd49c553a70a989584e18c60371febf4432315b523e1a6848c0208be4fbf"
},
"downloads": -1,
"filename": "pyterrier_services-0.2.0.tar.gz",
"has_sig": false,
"md5_digest": "af74248ea06e1cc8b3166723b14f0693",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 10345,
"upload_time": "2024-12-11T05:06:08",
"upload_time_iso_8601": "2024-12-11T05:06:08.902612Z",
"url": "https://files.pythonhosted.org/packages/94/e3/81ea29ceda175067ad7fc6f442a5cf82a938008b3698c1d52e33ca62900e/pyterrier_services-0.2.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-11 05:06:08",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "seanmacavaney",
"github_project": "pyterrier-services",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "python-terrier",
"specs": []
},
{
"name": "pyterrier-alpha",
"specs": []
},
{
"name": "requests",
"specs": []
}
],
"lcname": "pyterrier-services"
}