pyterrier-services


Namepyterrier-services JSON
Version 0.2.0 PyPI version JSON
download
home_pageNone
SummaryPyTerrier components for API Services
upload_time2024-12-11 05:06:08
maintainerNone
docs_urlNone
authorNone
requires_python>=3.6
licenseNone
keywords
VCS
bugtrack_url
requirements python-terrier pyterrier-alpha requests
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # pyterrier-services

PyTerrier components for online retrieval services.

## SemanticScholar

[Semantic Scholar](https://www.semanticscholar.org/me/research) is a scientific literature
search engine provided by the [Allen Institute for AI](https://allenai.org/).

`SemanticScholar()` provides access to the [search API](https://www.semanticscholar.org/product/api).

Example:

```python
>>> import pyterrier as pt ; pt.init()
>>> from pyterrier_services import SemanticScholar
>>> service = SemanticScholar()
>>> retriever = service.retriever()
>>> retriever.search('PyTerrier')
# qid      query                                     docno  score  rank                                              title                                           abstract
#   1  pyterrier  7fa92ed08eee68a945884b8744e7db9887aed9d3      0     0  PyTerrier: Declarative Experimentation in Pyth...  PyTerrier is a Python-based retrieval framewor...
#   1  pyterrier  a6b1126e058262c57d36012d0fdedc2417ad04e1     -1     1  Declarative Experimentation in Information Ret...  The advent of deep machine learning platforms ...
#   1  pyterrier  833b453c621099bccca028752aaa74262123706a     -2     2  PyTerrier-based Research Data Recommendations ...  Research data is of high importance in scienti...
#   1  pyterrier  73feb5cfe491342d52d47e8817d113c072067306     -3     3      The Information Retrieval Experiment Platform  We integrate irdatasets, ir_measures, and PyTe...
#   1  pyterrier  90b8a1adae2761e48c87fdeb68a595dc11161970     -4     4  QPPTK@TIREx: Simplified Query Performance Pred...  We describe our software submission to the ECI...
#   1  pyterrier  6659b3daabfb7e8e6dd8c4f47e2a774816888a9d     -5     5  Retrieving Comparative Arguments using Ensembl...  In this paper, we present a submission to the ...
#   1  pyterrier  2e503f3c23384a2112c84986c0a38c9cf6bf2488     -6     6      The Information Retrieval Experiment Platform  In this extended abstract, 1 we present the In...
#   1  pyterrier  4f901502b389e16faaf26eef7c935ecd80700f3d     -7     7  The Information Retrieval Experiment Platform ...  We have built TIREx, the information retrieval...
#   1  pyterrier  12c9b48d013255248378f23b7078e1788b5b1ef6     -8     8  Axiomatic Retrieval Experimentation with ir_ax...  Axiomatic approaches to information retrieval ...
#   1  pyterrier  b7da554d9f1f51e13a852ab0270dcd0d824c52e8     -9     9                        A Python Interface to PISA!  PISA (Performant Indexes and Search for Academ...
#   1  pyterrier  e57c05d3eb9c2d32332dc539d32e78f2b1fb05a6    -10    10  University of Glasgow Terrier Team and UFMG at...  For TREC 2020, we explore different re-ranking...
#   1  pyterrier  81ec8a40deb82470438d978b013a0f6094ec8843    -11    11  IR From Bag-of-words to BERT and Beyond throug...  The task of adhoc search is undergoing a renai...
```

## Pinecone

[Pinecone](https://docs.pinecone.io/models/overview) provides a Hosted Inference API to various embedding
and reranking models. ``pyterrier-services`` provides access to dense, learned sparse, and re-ranking APIs through `pyterrier_services.PineconeApi`.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "pyterrier-services",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "Sean MacAvaney <sean.macavaney@glasgow.ac.uk>",
    "keywords": null,
    "author": null,
    "author_email": "Sean MacAvaney <sean.macavaney@glasgow.ac.uk>",
    "download_url": "https://files.pythonhosted.org/packages/94/e3/81ea29ceda175067ad7fc6f442a5cf82a938008b3698c1d52e33ca62900e/pyterrier_services-0.2.0.tar.gz",
    "platform": null,
    "description": "# pyterrier-services\n\nPyTerrier components for online retrieval services.\n\n## SemanticScholar\n\n[Semantic Scholar](https://www.semanticscholar.org/me/research) is a scientific literature\nsearch engine provided by the [Allen Institute for AI](https://allenai.org/).\n\n`SemanticScholar()` provides access to the [search API](https://www.semanticscholar.org/product/api).\n\nExample:\n\n```python\n>>> import pyterrier as pt ; pt.init()\n>>> from pyterrier_services import SemanticScholar\n>>> service = SemanticScholar()\n>>> retriever = service.retriever()\n>>> retriever.search('PyTerrier')\n# qid      query                                     docno  score  rank                                              title                                           abstract\n#   1  pyterrier  7fa92ed08eee68a945884b8744e7db9887aed9d3      0     0  PyTerrier: Declarative Experimentation in Pyth...  PyTerrier is a Python-based retrieval framewor...\n#   1  pyterrier  a6b1126e058262c57d36012d0fdedc2417ad04e1     -1     1  Declarative Experimentation in Information Ret...  The advent of deep machine learning platforms ...\n#   1  pyterrier  833b453c621099bccca028752aaa74262123706a     -2     2  PyTerrier-based Research Data Recommendations ...  Research data is of high importance in scienti...\n#   1  pyterrier  73feb5cfe491342d52d47e8817d113c072067306     -3     3      The Information Retrieval Experiment Platform  We integrate irdatasets, ir_measures, and PyTe...\n#   1  pyterrier  90b8a1adae2761e48c87fdeb68a595dc11161970     -4     4  QPPTK@TIREx: Simplified Query Performance Pred...  We describe our software submission to the ECI...\n#   1  pyterrier  6659b3daabfb7e8e6dd8c4f47e2a774816888a9d     -5     5  Retrieving Comparative Arguments using Ensembl...  In this paper, we present a submission to the ...\n#   1  pyterrier  2e503f3c23384a2112c84986c0a38c9cf6bf2488     -6     6      The Information Retrieval Experiment Platform  In this extended abstract, 1 we present the In...\n#   1  pyterrier  4f901502b389e16faaf26eef7c935ecd80700f3d     -7     7  The Information Retrieval Experiment Platform ...  We have built TIREx, the information retrieval...\n#   1  pyterrier  12c9b48d013255248378f23b7078e1788b5b1ef6     -8     8  Axiomatic Retrieval Experimentation with ir_ax...  Axiomatic approaches to information retrieval ...\n#   1  pyterrier  b7da554d9f1f51e13a852ab0270dcd0d824c52e8     -9     9                        A Python Interface to PISA!  PISA (Performant Indexes and Search for Academ...\n#   1  pyterrier  e57c05d3eb9c2d32332dc539d32e78f2b1fb05a6    -10    10  University of Glasgow Terrier Team and UFMG at...  For TREC 2020, we explore different re-ranking...\n#   1  pyterrier  81ec8a40deb82470438d978b013a0f6094ec8843    -11    11  IR From Bag-of-words to BERT and Beyond throug...  The task of adhoc search is undergoing a renai...\n```\n\n## Pinecone\n\n[Pinecone](https://docs.pinecone.io/models/overview) provides a Hosted Inference API to various embedding\nand reranking models. ``pyterrier-services`` provides access to dense, learned sparse, and re-ranking APIs through `pyterrier_services.PineconeApi`.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "PyTerrier components for API Services",
    "version": "0.2.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/seanmacavaney/pyterrier-services/issues",
        "Repository": "https://github.com/seanmacavaney/pyterrier-services"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9e5a60f72acfa14d124bbdb5c7af7bb9e9c5a96393c513f1399f7a5076c9b041",
                "md5": "eb1b49ed812a5e55492570e087bf245d",
                "sha256": "93eb3d1c8fb7f5a28cddf1e10cc00d4ba440bfad2e986737b02f390f266b29b8"
            },
            "downloads": -1,
            "filename": "pyterrier_services-0.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "eb1b49ed812a5e55492570e087bf245d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 11156,
            "upload_time": "2024-12-11T05:06:06",
            "upload_time_iso_8601": "2024-12-11T05:06:06.687274Z",
            "url": "https://files.pythonhosted.org/packages/9e/5a/60f72acfa14d124bbdb5c7af7bb9e9c5a96393c513f1399f7a5076c9b041/pyterrier_services-0.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "94e381ea29ceda175067ad7fc6f442a5cf82a938008b3698c1d52e33ca62900e",
                "md5": "af74248ea06e1cc8b3166723b14f0693",
                "sha256": "f3e5cd49c553a70a989584e18c60371febf4432315b523e1a6848c0208be4fbf"
            },
            "downloads": -1,
            "filename": "pyterrier_services-0.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "af74248ea06e1cc8b3166723b14f0693",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 10345,
            "upload_time": "2024-12-11T05:06:08",
            "upload_time_iso_8601": "2024-12-11T05:06:08.902612Z",
            "url": "https://files.pythonhosted.org/packages/94/e3/81ea29ceda175067ad7fc6f442a5cf82a938008b3698c1d52e33ca62900e/pyterrier_services-0.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-11 05:06:08",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "seanmacavaney",
    "github_project": "pyterrier-services",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "python-terrier",
            "specs": []
        },
        {
            "name": "pyterrier-alpha",
            "specs": []
        },
        {
            "name": "requests",
            "specs": []
        }
    ],
    "lcname": "pyterrier-services"
}
        
Elapsed time: 0.45555s