python-constraint


Namepython-constraint JSON
Version 1.4.0 PyPI version JSON
download
home_pagehttps://github.com/python-constraint/python-constraint
Summarypython-constraint is a module implementing support for handling CSPs (Constraint Solving Problems) over finite domain
upload_time2018-11-05 09:02:44
maintainer
docs_urlNone
authorGustavo Niemeyer
requires_python
license
keywords csp constraint solving problems problem solver
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            |Build Status| |Code Health| |Code Coverage|

python-constraint
=================

Introduction
------------
The Python constraint module offers solvers for `Constraint Satisfaction Problems (CSPs) <https://en.wikipedia.org/wiki/Constraint_satisfaction_problem>`_ over finite domains in simple and pure Python. CSP is class of problems which may be represented in terms of variables (a, b, ...), domains (a in [1, 2, 3], ...), and constraints (a < b, ...).

Examples
--------

Basics
~~~~~~

This interactive Python session demonstrates the module basic operation:

.. code-block:: python

    >>> from constraint import *
    >>> problem = Problem()
    >>> problem.addVariable("a", [1,2,3])
    >>> problem.addVariable("b", [4,5,6])
    >>> problem.getSolutions()
    [{'a': 3, 'b': 6}, {'a': 3, 'b': 5}, {'a': 3, 'b': 4},
     {'a': 2, 'b': 6}, {'a': 2, 'b': 5}, {'a': 2, 'b': 4},
     {'a': 1, 'b': 6}, {'a': 1, 'b': 5}, {'a': 1, 'b': 4}]

    >>> problem.addConstraint(lambda a, b: a*2 == b,
                              ("a", "b"))
    >>> problem.getSolutions()
    [{'a': 3, 'b': 6}, {'a': 2, 'b': 4}]

    >>> problem = Problem()
    >>> problem.addVariables(["a", "b"], [1, 2, 3])
    >>> problem.addConstraint(AllDifferentConstraint())
    >>> problem.getSolutions()
    [{'a': 3, 'b': 2}, {'a': 3, 'b': 1}, {'a': 2, 'b': 3},
     {'a': 2, 'b': 1}, {'a': 1, 'b': 2}, {'a': 1, 'b': 3}]

Rooks problem
~~~~~~~~~~~~~

The following example solves the classical Eight Rooks problem:

.. code-block:: python

    >>> problem = Problem()
    >>> numpieces = 8
    >>> cols = range(numpieces)
    >>> rows = range(numpieces)
    >>> problem.addVariables(cols, rows)
    >>> for col1 in cols:
    ...     for col2 in cols:
    ...         if col1 < col2:
    ...             problem.addConstraint(lambda row1, row2: row1 != row2,
    ...                                   (col1, col2))
    >>> solutions = problem.getSolutions()
    >>> solutions
    >>> solutions
    [{0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 2, 6: 1, 7: 0},
     {0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 2, 6: 0, 7: 1},
     {0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 1, 6: 2, 7: 0},
     {0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 1, 6: 0, 7: 2},
     ...
     {0: 7, 1: 5, 2: 3, 3: 6, 4: 2, 5: 1, 6: 4, 7: 0},
     {0: 7, 1: 5, 2: 3, 3: 6, 4: 1, 5: 2, 6: 0, 7: 4},
     {0: 7, 1: 5, 2: 3, 3: 6, 4: 1, 5: 2, 6: 4, 7: 0},
     {0: 7, 1: 5, 2: 3, 3: 6, 4: 1, 5: 4, 6: 2, 7: 0},
     {0: 7, 1: 5, 2: 3, 3: 6, 4: 1, 5: 4, 6: 0, 7: 2},
     ...]


Magic squares
~~~~~~~~~~~~~

This example solves a 4x4 magic square:

.. code-block:: python

    >>> problem = Problem()
    >>> problem.addVariables(range(0, 16), range(1, 16 + 1))
    >>> problem.addConstraint(AllDifferentConstraint(), range(0, 16))
    >>> problem.addConstraint(ExactSumConstraint(34), [0, 5, 10, 15])
    >>> problem.addConstraint(ExactSumConstraint(34), [3, 6, 9, 12])
    >>> for row in range(4):
    ...     problem.addConstraint(ExactSumConstraint(34),
                                  [row * 4 + i for i in range(4)])
    >>> for col in range(4):
    ...     problem.addConstraint(ExactSumConstraint(34),
                                  [col + 4 * i for i in range(4)])
    >>> solutions = problem.getSolutions()

Features
--------

The following solvers are available:

- Backtracking solver
- Recursive backtracking solver
- Minimum conflicts solver


.. role:: python(code)
   :language: python

Predefined constraint types currently available:

- :python:`FunctionConstraint`
- :python:`AllDifferentConstraint`
- :python:`AllEqualConstraint`
- :python:`ExactSumConstraint`
- :python:`MaxSumConstraint`
- :python:`MinSumConstraint`
- :python:`InSetConstraint`
- :python:`NotInSetConstraint`
- :python:`SomeInSetConstraint`
- :python:`SomeNotInSetConstraint`

API documentation
-----------------
Documentation for the module is available at: http://labix.org/doc/constraint/

Download and install
--------------------

.. code-block:: shell

    $ pip install python-constraint

Roadmap
-------

This GitHub organization and repository is a global effort to help to
maintain python-constraint which was written by Gustavo Niemeyer
and originaly located at https://labix.org/python-constraint

- Create some unit tests - DONE
- Enable continuous integration - DONE
- Port to Python 3 (Python 2 being also supported) - DONE
- Respect Style Guide for Python Code (PEP8) - DONE
- Improve code coverage writting more unit tests - ToDo
- Move doc to Sphinx or MkDocs - https://readthedocs.org/ - ToDo

Contact
-------
- `Gustavo Niemeyer <https://github.com/niemeyer/>`_ <gustavo@niemeyer.net>
- `Sébastien Celles <https://github.com/scls19fr/>`_ <s.celles@gmail.com>

But it's probably better to `open an issue <https://github.com/python-constraint/python-constraint/issues>`_.


.. |Build Status| image:: https://travis-ci.org/python-constraint/python-constraint.svg?branch=master
   :target: https://travis-ci.org/python-constraint/python-constraint
.. |Code Health| image:: https://landscape.io/github/python-constraint/python-constraint/master/landscape.svg?style=flat
   :target: https://landscape.io/github/python-constraint/python-constraint/master
   :alt: Code Health
.. |Code Coverage| image:: https://coveralls.io/repos/github/python-constraint/python-constraint/badge.svg
   :target: https://coveralls.io/github/python-constraint/python-constraint
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/python-constraint/python-constraint",
    "name": "python-constraint",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "csp constraint solving problems problem solver",
    "author": "Gustavo Niemeyer",
    "author_email": "gustavo@niemeyer.net",
    "download_url": "https://files.pythonhosted.org/packages/37/8b/5f1bc2734ca611943e1d6733ee244238679f6410a10cd45ede55a61a8402/python-constraint-1.4.0.tar.bz2",
    "platform": "",
    "description": "|Build Status| |Code Health| |Code Coverage|\n\npython-constraint\n=================\n\nIntroduction\n------------\nThe Python constraint module offers solvers for `Constraint Satisfaction Problems (CSPs) <https://en.wikipedia.org/wiki/Constraint_satisfaction_problem>`_ over finite domains in simple and pure Python. CSP is class of problems which may be represented in terms of variables (a, b, ...), domains (a in [1, 2, 3], ...), and constraints (a < b, ...).\n\nExamples\n--------\n\nBasics\n~~~~~~\n\nThis interactive Python session demonstrates the module basic operation:\n\n.. code-block:: python\n\n    >>> from constraint import *\n    >>> problem = Problem()\n    >>> problem.addVariable(\"a\", [1,2,3])\n    >>> problem.addVariable(\"b\", [4,5,6])\n    >>> problem.getSolutions()\n    [{'a': 3, 'b': 6}, {'a': 3, 'b': 5}, {'a': 3, 'b': 4},\n     {'a': 2, 'b': 6}, {'a': 2, 'b': 5}, {'a': 2, 'b': 4},\n     {'a': 1, 'b': 6}, {'a': 1, 'b': 5}, {'a': 1, 'b': 4}]\n\n    >>> problem.addConstraint(lambda a, b: a*2 == b,\n                              (\"a\", \"b\"))\n    >>> problem.getSolutions()\n    [{'a': 3, 'b': 6}, {'a': 2, 'b': 4}]\n\n    >>> problem = Problem()\n    >>> problem.addVariables([\"a\", \"b\"], [1, 2, 3])\n    >>> problem.addConstraint(AllDifferentConstraint())\n    >>> problem.getSolutions()\n    [{'a': 3, 'b': 2}, {'a': 3, 'b': 1}, {'a': 2, 'b': 3},\n     {'a': 2, 'b': 1}, {'a': 1, 'b': 2}, {'a': 1, 'b': 3}]\n\nRooks problem\n~~~~~~~~~~~~~\n\nThe following example solves the classical Eight Rooks problem:\n\n.. code-block:: python\n\n    >>> problem = Problem()\n    >>> numpieces = 8\n    >>> cols = range(numpieces)\n    >>> rows = range(numpieces)\n    >>> problem.addVariables(cols, rows)\n    >>> for col1 in cols:\n    ...     for col2 in cols:\n    ...         if col1 < col2:\n    ...             problem.addConstraint(lambda row1, row2: row1 != row2,\n    ...                                   (col1, col2))\n    >>> solutions = problem.getSolutions()\n    >>> solutions\n    >>> solutions\n    [{0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 2, 6: 1, 7: 0},\n     {0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 2, 6: 0, 7: 1},\n     {0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 1, 6: 2, 7: 0},\n     {0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 1, 6: 0, 7: 2},\n     ...\n     {0: 7, 1: 5, 2: 3, 3: 6, 4: 2, 5: 1, 6: 4, 7: 0},\n     {0: 7, 1: 5, 2: 3, 3: 6, 4: 1, 5: 2, 6: 0, 7: 4},\n     {0: 7, 1: 5, 2: 3, 3: 6, 4: 1, 5: 2, 6: 4, 7: 0},\n     {0: 7, 1: 5, 2: 3, 3: 6, 4: 1, 5: 4, 6: 2, 7: 0},\n     {0: 7, 1: 5, 2: 3, 3: 6, 4: 1, 5: 4, 6: 0, 7: 2},\n     ...]\n\n\nMagic squares\n~~~~~~~~~~~~~\n\nThis example solves a 4x4 magic square:\n\n.. code-block:: python\n\n    >>> problem = Problem()\n    >>> problem.addVariables(range(0, 16), range(1, 16 + 1))\n    >>> problem.addConstraint(AllDifferentConstraint(), range(0, 16))\n    >>> problem.addConstraint(ExactSumConstraint(34), [0, 5, 10, 15])\n    >>> problem.addConstraint(ExactSumConstraint(34), [3, 6, 9, 12])\n    >>> for row in range(4):\n    ...     problem.addConstraint(ExactSumConstraint(34),\n                                  [row * 4 + i for i in range(4)])\n    >>> for col in range(4):\n    ...     problem.addConstraint(ExactSumConstraint(34),\n                                  [col + 4 * i for i in range(4)])\n    >>> solutions = problem.getSolutions()\n\nFeatures\n--------\n\nThe following solvers are available:\n\n- Backtracking solver\n- Recursive backtracking solver\n- Minimum conflicts solver\n\n\n.. role:: python(code)\n   :language: python\n\nPredefined constraint types currently available:\n\n- :python:`FunctionConstraint`\n- :python:`AllDifferentConstraint`\n- :python:`AllEqualConstraint`\n- :python:`ExactSumConstraint`\n- :python:`MaxSumConstraint`\n- :python:`MinSumConstraint`\n- :python:`InSetConstraint`\n- :python:`NotInSetConstraint`\n- :python:`SomeInSetConstraint`\n- :python:`SomeNotInSetConstraint`\n\nAPI documentation\n-----------------\nDocumentation for the module is available at: http://labix.org/doc/constraint/\n\nDownload and install\n--------------------\n\n.. code-block:: shell\n\n    $ pip install python-constraint\n\nRoadmap\n-------\n\nThis GitHub organization and repository is a global effort to help to\nmaintain python-constraint which was written by Gustavo Niemeyer\nand originaly located at https://labix.org/python-constraint\n\n- Create some unit tests - DONE\n- Enable continuous integration - DONE\n- Port to Python 3 (Python 2 being also supported) - DONE\n- Respect Style Guide for Python Code (PEP8) - DONE\n- Improve code coverage writting more unit tests - ToDo\n- Move doc to Sphinx or MkDocs - https://readthedocs.org/ - ToDo\n\nContact\n-------\n- `Gustavo Niemeyer <https://github.com/niemeyer/>`_ <gustavo@niemeyer.net>\n- `S\u00e9bastien Celles <https://github.com/scls19fr/>`_ <s.celles@gmail.com>\n\nBut it's probably better to `open an issue <https://github.com/python-constraint/python-constraint/issues>`_.\n\n\n.. |Build Status| image:: https://travis-ci.org/python-constraint/python-constraint.svg?branch=master\n   :target: https://travis-ci.org/python-constraint/python-constraint\n.. |Code Health| image:: https://landscape.io/github/python-constraint/python-constraint/master/landscape.svg?style=flat\n   :target: https://landscape.io/github/python-constraint/python-constraint/master\n   :alt: Code Health\n.. |Code Coverage| image:: https://coveralls.io/repos/github/python-constraint/python-constraint/badge.svg\n   :target: https://coveralls.io/github/python-constraint/python-constraint",
    "bugtrack_url": null,
    "license": "",
    "summary": "python-constraint is a module implementing support for handling CSPs (Constraint Solving Problems) over finite domain",
    "version": "1.4.0",
    "split_keywords": [
        "csp",
        "constraint",
        "solving",
        "problems",
        "problem",
        "solver"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "53e4d375d8c84b383d9debf5e517d21b",
                "sha256": "501d6f17afe0032dfc6ea6c0f8acc12e44f992733f00e8538961031ef27ccb8e"
            },
            "downloads": -1,
            "filename": "python-constraint-1.4.0.tar.bz2",
            "has_sig": false,
            "md5_digest": "53e4d375d8c84b383d9debf5e517d21b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 18416,
            "upload_time": "2018-11-05T09:02:44",
            "upload_time_iso_8601": "2018-11-05T09:02:44.334316Z",
            "url": "https://files.pythonhosted.org/packages/37/8b/5f1bc2734ca611943e1d6733ee244238679f6410a10cd45ede55a61a8402/python-constraint-1.4.0.tar.bz2",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2018-11-05 09:02:44",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "python-constraint",
    "github_project": "python-constraint",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": false,
    "lcname": "python-constraint"
}
        
Elapsed time: 0.03540s