python-datamodel


Namepython-datamodel JSON
Version 0.7.4 PyPI version JSON
download
home_pagehttps://github.com/phenobarbital/python-datamodel
Summarysimple library based on python +3.8 to use Dataclass-syntaxfor interacting with Data
upload_time2024-11-06 23:44:04
maintainerNone
docs_urlNone
authorJesus Lara
requires_python>=3.9.13
licenseBSD
keywords asyncio dataclass dataclasses data models
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # DataModel
DataModel is a simple library based on python +3.8 to use Dataclass-syntax for interacting with
Data, using the same syntax of Dataclass, users can write Python Objects
and work with Data in the same way (like ORM's), is a reimplementation of python Dataclasses supporting true inheritance (without decorators), true composition and other good features.

The key features are:
* **Easy to use**: No more using decorators, concerns abour re-ordering attributes or common problems with using dataclasses with inheritance.
* **Extensibility**: Can use other dataclasses, Data objects or primitives as data-types.
* **Fast**: DataModel is a replacement 100% full compatible with dataclasses, without any overhead.



## Requirements

Python 3.8+

## Installation

<div class="termy">

```console
$ pip install python-datamodel
---> 100%
Successfully installed datamodel
```


</div>

## Quickstart


```python

from datamodel import Field, BaseModel
from dataclasses import dataclass, fields, is_dataclass


# This pure Dataclass:
@dataclass
class Point:
    x: int = Field(default=0, min=0, max=10)
    y: int = Field(default=0, min=0, max=10)

point = Point(x=10, y=10)
print(point)
print(fields(point))
print('IS a Dataclass?: ', is_dataclass(point))

# Can be represented by BaseModel
class newPoint(BaseModel):
    x: int = Field(default=0, min=0, max=10)
    y: int = Field(default=0, min=0, max=10)

    def get_coordinate(self):
        return (self.x, self.y)

point = newPoint(x=10, y=10)
print(point)
print(fields(point))
print('IS a Dataclass?: ', is_dataclass(point))
print(point.get_coordinate())
```
## Supported types

DataModel support recursive transformation of fields, so you can easily work with nested dataclasses or complex types.

DataModel supports automatic conversion of:

- [datetime](https://docs.python.org/3/library/datetime.html#available-types)
objects. `datetime` objects are encoded to str exactly like orjson conversion, any str typed as datetime is decoded to datetime.
The same behavior is used to decoding time, date and timedelta objects.

- [UUID](https://docs.python.org/3/library/uuid.html#uuid.UUID) objects. They
are encoded as `str` (JSON string) and decoded back to uuid.UUID objects.

- [Decimal](https://docs.python.org/3/library/decimal.html) objects. They are
also encoded as `float` and decoded back to Decimal.

Also, "custom" encoders are supported.

```python

import uuid
from typing import (
    List,
    Optional,
    Union
)
from dataclasses import dataclass, field
from datamodel import BaseModel, Field

@dataclass
class Point:
    x: int = Field(default=0, min=0, max=10)
    y: int = Field(default=0, min=0, max=10)

class coordinate(BaseModel, intSum):
    latitude: float
    longitude: float

    def get_location(self) -> tuple:
        return (self.latitude, self.longitude)

def auto_uid():
    return uuid.uuid4()

def default_rect():
    return [0,0,0,0]

def valid_zipcode(field, value):
    return value > 1000

class Address(BaseModel):
    id: uuid.UUID = field(default_factory=auto_uid)
    street: str = Field(required=True)
    zipcode: int = Field(required=False, default=1010, validator=valid_zipcode)
    location: Optional[coordinate]
    box: List[Optional[Point]]
    rect: List[int] = Field(factory=default_rect)


addr = Address(street="Calle Mayor", location=(18.1, 22.1), zipcode=3021, box=[(2, 10), (4, 8)], rect=[1, 2, 3, 4])
print('IS a Dataclass?: ', is_dataclass(addr))

print(addr.location.get_location())
```
```console
# returns
Address(id=UUID('24b34dd5-8d35-4cfd-8916-7876b28cdae3'), street='Calle Mayor', zipcode=3021, location=coordinate(latitude=18.1, longitude=22.1), box=[Point(x=2, y=10), Point(x=4, y=8)], rect=[1, 2, 3, 4])
```

* Fast and convenience conversion from-to JSON (using orjson):

```python
import orjson

b = addr.json()
print(b)
```
```console
{"id":"24b34dd5-8d35-4cfd-8916-7876b28cdae3","street":"Calle Mayor","zipcode":3021,"location":{"latitude":18.1,"longitude":22.1}, "box":[{"x":2,"y":10},{"x":4,"y":8}],"rect":[1,2,3,4]}
```

```python
# and re-imported from json
new_addr = Address.from_json(b) # load directly from json string
# or using a dictionary decoded by orjson
data = orjson.loads(b)
new_addr = Address(**data)

```

## Inheritance

python-datamodel supports inheritance of classes.

```python
import uuid
from typing import Union, List
from dataclasses import dataclass, field
from datamodel import BaseModel, Column, Field


def auto_uid():
    return uuid.uuid4()

class User(BaseModel):
    id: uuid.UUID = field(default_factory=auto_uid)
    name: str
    first_name: str
    last_name: str


@dataclass
class Address:
    street: str
    city: str
    state: str
    zipcode: str
    country: Optional[str] = 'US'

    def __str__(self) -> str:
        """Provides pretty response of address"""
        lines = [self.street]
        lines.append(f"{self.city}, {self.zipcode} {self.state}")
        lines.append(f"{self.country}")
        return "\n".join(lines)

class Employee(User):
    """
    Base Employee.
    """
    role: str
    address: Address # composition of a dataclass inside of DataModel is possible.

# Supporting multiple inheritance and composition
# Wage Policies
class MonthlySalary(BaseModel):
    salary: Union[float, int]

    def calculate_payroll(self) -> Union[float, int]:
        return self.salary

class HourlySalary(BaseModel):
    salary: Union[float, int] = Field(default=0)
    hours_worked: Union[float, int] = Field(default=0)

    def calculate_payroll(self) -> Union[float, int]:
        return (self.hours_worked * self.salary)

# employee types
class Secretary(Employee, MonthlySalary):
    """Secretary.

    Person with montly salary policy and no commissions.
    """
    role: str = 'Secretary'

class FactoryWorker(Employee, HourlySalary):
    """
    FactoryWorker is an employee with hourly salary policy and no commissions.
    """
    role: str = 'Factory Worker'

class PayrollSystem:
    def calculate_payroll(self, employees: List[dataclass]) -> None:
        print('=== Calculating Payroll === ')
        for employee in employees:
            print(f"Payroll for employee {employee.id} - {employee.name}")
            print(f"- {employee.role} Amount: {employee.calculate_payroll()}")
            if employee.address:
                print('- Sent to:')
                print(employee.address)
            print("")

jane = Secretary(name='Jane Doe', first_name='Jane', last_name='Doe', salary=1500)
bob = FactoryWorker(name='Bob Doyle', first_name='Bob', last_name='Doyle', salary=15, hours_worked=40)
mitch = FactoryWorker(name='Mitch Brian', first_name='Mitch', last_name='Brian', salary=20, hours_worked=35)

payroll = PayrollSystem()
payroll.calculate_payroll([jane, bob, mitch])
```
A sample of output:
```
```console
=== Calculating Payroll ===
Payroll for employee 745a2623-d4d2-4da6-bf0a-1fa691bafd33 - Jane Doe
- Secretary Amount: 1500
- Sent to:
Rodeo Drive, Rd
Los Angeles, 31050 CA
US
```
## Contributing

First of all, thank you for being interested in contributing to this library.
I really appreciate you taking the time to work on this project.

- If you're just interested in getting into the code, a good place to start are
issues tagged as bugs.
- If introducing a new feature, especially one that modifies the public API,
consider submitting an issue for discussion before a PR. Please also take a look
at existing issues / PRs to see what you're proposing has  already been covered
before / exists.
- I like to follow the commit conventions documented [here](https://www.conventionalcommits.org/en/v1.0.0/#summary)

## License

This project is licensed under the terms of the BSD v3. license.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/phenobarbital/python-datamodel",
    "name": "python-datamodel",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9.13",
    "maintainer_email": null,
    "keywords": "asyncio, dataclass, dataclasses, data models",
    "author": "Jesus Lara",
    "author_email": "jesuslarag@gmail.com",
    "download_url": null,
    "platform": "any",
    "description": "# DataModel\nDataModel is a simple library based on python +3.8 to use Dataclass-syntax for interacting with\nData, using the same syntax of Dataclass, users can write Python Objects\nand work with Data in the same way (like ORM's), is a reimplementation of python Dataclasses supporting true inheritance (without decorators), true composition and other good features.\n\nThe key features are:\n* **Easy to use**: No more using decorators, concerns abour re-ordering attributes or common problems with using dataclasses with inheritance.\n* **Extensibility**: Can use other dataclasses, Data objects or primitives as data-types.\n* **Fast**: DataModel is a replacement 100% full compatible with dataclasses, without any overhead.\n\n\n\n## Requirements\n\nPython 3.8+\n\n## Installation\n\n<div class=\"termy\">\n\n```console\n$ pip install python-datamodel\n---> 100%\nSuccessfully installed datamodel\n```\n\n\n</div>\n\n## Quickstart\n\n\n```python\n\nfrom datamodel import Field, BaseModel\nfrom dataclasses import dataclass, fields, is_dataclass\n\n\n# This pure Dataclass:\n@dataclass\nclass Point:\n    x: int = Field(default=0, min=0, max=10)\n    y: int = Field(default=0, min=0, max=10)\n\npoint = Point(x=10, y=10)\nprint(point)\nprint(fields(point))\nprint('IS a Dataclass?: ', is_dataclass(point))\n\n# Can be represented by BaseModel\nclass newPoint(BaseModel):\n    x: int = Field(default=0, min=0, max=10)\n    y: int = Field(default=0, min=0, max=10)\n\n    def get_coordinate(self):\n        return (self.x, self.y)\n\npoint = newPoint(x=10, y=10)\nprint(point)\nprint(fields(point))\nprint('IS a Dataclass?: ', is_dataclass(point))\nprint(point.get_coordinate())\n```\n## Supported types\n\nDataModel support recursive transformation of fields, so you can easily work with nested dataclasses or complex types.\n\nDataModel supports automatic conversion of:\n\n- [datetime](https://docs.python.org/3/library/datetime.html#available-types)\nobjects. `datetime` objects are encoded to str exactly like orjson conversion, any str typed as datetime is decoded to datetime.\nThe same behavior is used to decoding time, date and timedelta objects.\n\n- [UUID](https://docs.python.org/3/library/uuid.html#uuid.UUID) objects. They\nare encoded as `str` (JSON string) and decoded back to uuid.UUID objects.\n\n- [Decimal](https://docs.python.org/3/library/decimal.html) objects. They are\nalso encoded as `float` and decoded back to Decimal.\n\nAlso, \"custom\" encoders are supported.\n\n```python\n\nimport uuid\nfrom typing import (\n    List,\n    Optional,\n    Union\n)\nfrom dataclasses import dataclass, field\nfrom datamodel import BaseModel, Field\n\n@dataclass\nclass Point:\n    x: int = Field(default=0, min=0, max=10)\n    y: int = Field(default=0, min=0, max=10)\n\nclass coordinate(BaseModel, intSum):\n    latitude: float\n    longitude: float\n\n    def get_location(self) -> tuple:\n        return (self.latitude, self.longitude)\n\ndef auto_uid():\n    return uuid.uuid4()\n\ndef default_rect():\n    return [0,0,0,0]\n\ndef valid_zipcode(field, value):\n    return value > 1000\n\nclass Address(BaseModel):\n    id: uuid.UUID = field(default_factory=auto_uid)\n    street: str = Field(required=True)\n    zipcode: int = Field(required=False, default=1010, validator=valid_zipcode)\n    location: Optional[coordinate]\n    box: List[Optional[Point]]\n    rect: List[int] = Field(factory=default_rect)\n\n\naddr = Address(street=\"Calle Mayor\", location=(18.1, 22.1), zipcode=3021, box=[(2, 10), (4, 8)], rect=[1, 2, 3, 4])\nprint('IS a Dataclass?: ', is_dataclass(addr))\n\nprint(addr.location.get_location())\n```\n```console\n# returns\nAddress(id=UUID('24b34dd5-8d35-4cfd-8916-7876b28cdae3'), street='Calle Mayor', zipcode=3021, location=coordinate(latitude=18.1, longitude=22.1), box=[Point(x=2, y=10), Point(x=4, y=8)], rect=[1, 2, 3, 4])\n```\n\n* Fast and convenience conversion from-to JSON (using orjson):\n\n```python\nimport orjson\n\nb = addr.json()\nprint(b)\n```\n```console\n{\"id\":\"24b34dd5-8d35-4cfd-8916-7876b28cdae3\",\"street\":\"Calle Mayor\",\"zipcode\":3021,\"location\":{\"latitude\":18.1,\"longitude\":22.1}, \"box\":[{\"x\":2,\"y\":10},{\"x\":4,\"y\":8}],\"rect\":[1,2,3,4]}\n```\n\n```python\n# and re-imported from json\nnew_addr = Address.from_json(b) # load directly from json string\n# or using a dictionary decoded by orjson\ndata = orjson.loads(b)\nnew_addr = Address(**data)\n\n```\n\n## Inheritance\n\npython-datamodel supports inheritance of classes.\n\n```python\nimport uuid\nfrom typing import Union, List\nfrom dataclasses import dataclass, field\nfrom datamodel import BaseModel, Column, Field\n\n\ndef auto_uid():\n    return uuid.uuid4()\n\nclass User(BaseModel):\n    id: uuid.UUID = field(default_factory=auto_uid)\n    name: str\n    first_name: str\n    last_name: str\n\n\n@dataclass\nclass Address:\n    street: str\n    city: str\n    state: str\n    zipcode: str\n    country: Optional[str] = 'US'\n\n    def __str__(self) -> str:\n        \"\"\"Provides pretty response of address\"\"\"\n        lines = [self.street]\n        lines.append(f\"{self.city}, {self.zipcode} {self.state}\")\n        lines.append(f\"{self.country}\")\n        return \"\\n\".join(lines)\n\nclass Employee(User):\n    \"\"\"\n    Base Employee.\n    \"\"\"\n    role: str\n    address: Address # composition of a dataclass inside of DataModel is possible.\n\n# Supporting multiple inheritance and composition\n# Wage Policies\nclass MonthlySalary(BaseModel):\n    salary: Union[float, int]\n\n    def calculate_payroll(self) -> Union[float, int]:\n        return self.salary\n\nclass HourlySalary(BaseModel):\n    salary: Union[float, int] = Field(default=0)\n    hours_worked: Union[float, int] = Field(default=0)\n\n    def calculate_payroll(self) -> Union[float, int]:\n        return (self.hours_worked * self.salary)\n\n# employee types\nclass Secretary(Employee, MonthlySalary):\n    \"\"\"Secretary.\n\n    Person with montly salary policy and no commissions.\n    \"\"\"\n    role: str = 'Secretary'\n\nclass FactoryWorker(Employee, HourlySalary):\n    \"\"\"\n    FactoryWorker is an employee with hourly salary policy and no commissions.\n    \"\"\"\n    role: str = 'Factory Worker'\n\nclass PayrollSystem:\n    def calculate_payroll(self, employees: List[dataclass]) -> None:\n        print('=== Calculating Payroll === ')\n        for employee in employees:\n            print(f\"Payroll for employee {employee.id} - {employee.name}\")\n            print(f\"- {employee.role} Amount: {employee.calculate_payroll()}\")\n            if employee.address:\n                print('- Sent to:')\n                print(employee.address)\n            print(\"\")\n\njane = Secretary(name='Jane Doe', first_name='Jane', last_name='Doe', salary=1500)\nbob = FactoryWorker(name='Bob Doyle', first_name='Bob', last_name='Doyle', salary=15, hours_worked=40)\nmitch = FactoryWorker(name='Mitch Brian', first_name='Mitch', last_name='Brian', salary=20, hours_worked=35)\n\npayroll = PayrollSystem()\npayroll.calculate_payroll([jane, bob, mitch])\n```\nA sample of output:\n```\n```console\n=== Calculating Payroll ===\nPayroll for employee 745a2623-d4d2-4da6-bf0a-1fa691bafd33 - Jane Doe\n- Secretary Amount: 1500\n- Sent to:\nRodeo Drive, Rd\nLos Angeles, 31050 CA\nUS\n```\n## Contributing\n\nFirst of all, thank you for being interested in contributing to this library.\nI really appreciate you taking the time to work on this project.\n\n- If you're just interested in getting into the code, a good place to start are\nissues tagged as bugs.\n- If introducing a new feature, especially one that modifies the public API,\nconsider submitting an issue for discussion before a PR. Please also take a look\nat existing issues / PRs to see what you're proposing has  already been covered\nbefore / exists.\n- I like to follow the commit conventions documented [here](https://www.conventionalcommits.org/en/v1.0.0/#summary)\n\n## License\n\nThis project is licensed under the terms of the BSD v3. license.\n",
    "bugtrack_url": null,
    "license": "BSD",
    "summary": "simple library based on python +3.8 to use Dataclass-syntaxfor interacting with Data",
    "version": "0.7.4",
    "project_urls": {
        "Funding": "https://paypal.me/phenobarbital",
        "Homepage": "https://github.com/phenobarbital/python-datamodel",
        "Say Thanks!": "https://saythanks.io/to/phenobarbital",
        "Source": "https://github.com/phenobarbital/datamodel"
    },
    "split_keywords": [
        "asyncio",
        " dataclass",
        " dataclasses",
        " data models"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a7664f6fda79f7d7fc1ee66251ac900ba88797097d0eaf27392f7c79b2c99c5a",
                "md5": "13ab01a782088252b62c79c8c0a5d96c",
                "sha256": "9fae2a6123f69849f38ef0a05ed86f91b007e849451fd84de09313c0b5916e0f"
            },
            "downloads": -1,
            "filename": "python_datamodel-0.7.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "13ab01a782088252b62c79c8c0a5d96c",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.9.13",
            "size": 2173629,
            "upload_time": "2024-11-06T23:44:04",
            "upload_time_iso_8601": "2024-11-06T23:44:04.825811Z",
            "url": "https://files.pythonhosted.org/packages/a7/66/4f6fda79f7d7fc1ee66251ac900ba88797097d0eaf27392f7c79b2c99c5a/python_datamodel-0.7.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "dc720d478e1c8981d8bf21e13329c1790a199f9b67f7e2ebbac8cd5fa1c0ee28",
                "md5": "df0db6aa87479b8a080a63bdf0a6823e",
                "sha256": "10fcde9380f28fab34c501977c463181a4cc88c5e023c4ac25450577e81d6611"
            },
            "downloads": -1,
            "filename": "python_datamodel-0.7.4-cp310-cp310-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "df0db6aa87479b8a080a63bdf0a6823e",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.9.13",
            "size": 882265,
            "upload_time": "2024-11-06T23:44:13",
            "upload_time_iso_8601": "2024-11-06T23:44:13.352696Z",
            "url": "https://files.pythonhosted.org/packages/dc/72/0d478e1c8981d8bf21e13329c1790a199f9b67f7e2ebbac8cd5fa1c0ee28/python_datamodel-0.7.4-cp310-cp310-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9072df16144ef3a7acdc8f933a6c1e33a8bf03f4a3f0dd7aff63e835f407947a",
                "md5": "0ad428dfabd558f429a604ce205f12c4",
                "sha256": "fbf17d515be4435c6649670420894ebe9b52afac859073db233730914adda273"
            },
            "downloads": -1,
            "filename": "python_datamodel-0.7.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "0ad428dfabd558f429a604ce205f12c4",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.9.13",
            "size": 2291109,
            "upload_time": "2024-11-06T23:44:07",
            "upload_time_iso_8601": "2024-11-06T23:44:07.060045Z",
            "url": "https://files.pythonhosted.org/packages/90/72/df16144ef3a7acdc8f933a6c1e33a8bf03f4a3f0dd7aff63e835f407947a/python_datamodel-0.7.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4c592c60b5499f80bbfcf1153e72487c975ae0b8fa9fd9472b8f35fae89db4aa",
                "md5": "15e93d63be837e2bd349395660ed99de",
                "sha256": "527dc13473bc31d62b0044bea7d75c726d479b8a2b2c8a8ea4663b276c693874"
            },
            "downloads": -1,
            "filename": "python_datamodel-0.7.4-cp311-cp311-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "15e93d63be837e2bd349395660ed99de",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.9.13",
            "size": 884090,
            "upload_time": "2024-11-06T23:44:14",
            "upload_time_iso_8601": "2024-11-06T23:44:14.535928Z",
            "url": "https://files.pythonhosted.org/packages/4c/59/2c60b5499f80bbfcf1153e72487c975ae0b8fa9fd9472b8f35fae89db4aa/python_datamodel-0.7.4-cp311-cp311-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8c56b316ef869083cbccaffc6f72b8129b97dae36b58ee3967978e464c3bff33",
                "md5": "1592f617b154645c8aa43e5928d2a06c",
                "sha256": "94dcfb4df15a1ace809d90379d93303636b41d4b7837c6d77af671d7e7faf6a7"
            },
            "downloads": -1,
            "filename": "python_datamodel-0.7.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "1592f617b154645c8aa43e5928d2a06c",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.9.13",
            "size": 2438772,
            "upload_time": "2024-11-06T23:44:09",
            "upload_time_iso_8601": "2024-11-06T23:44:09.019647Z",
            "url": "https://files.pythonhosted.org/packages/8c/56/b316ef869083cbccaffc6f72b8129b97dae36b58ee3967978e464c3bff33/python_datamodel-0.7.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "44bdbeb0bc17f6365f194e52f8523dda5b9ff5f433fe696dfd66ecf78f6aa2ad",
                "md5": "7b77632f3f8c22c6820caf0f16d78d9d",
                "sha256": "c4edb2e42969eee1b3e19e6b456f5f40c9834d1a20c097e0f085c776ce0f2045"
            },
            "downloads": -1,
            "filename": "python_datamodel-0.7.4-cp312-cp312-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "7b77632f3f8c22c6820caf0f16d78d9d",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.9.13",
            "size": 878967,
            "upload_time": "2024-11-06T23:44:15",
            "upload_time_iso_8601": "2024-11-06T23:44:15.789964Z",
            "url": "https://files.pythonhosted.org/packages/44/bd/beb0bc17f6365f194e52f8523dda5b9ff5f433fe696dfd66ecf78f6aa2ad/python_datamodel-0.7.4-cp312-cp312-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "175c538c6de4aa9dfb1f5e568c0ae6284a44532f452e3acec05b91d23aad3733",
                "md5": "bf9e89777814a34e41bc74a0ae112ac1",
                "sha256": "2cb7c7c4d848928399dd2a70e9eaad476d80ad9119d87da506eb748e7b239dc1"
            },
            "downloads": -1,
            "filename": "python_datamodel-0.7.4-cp313-cp313-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "bf9e89777814a34e41bc74a0ae112ac1",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": ">=3.9.13",
            "size": 876659,
            "upload_time": "2024-11-06T23:44:17",
            "upload_time_iso_8601": "2024-11-06T23:44:17.463563Z",
            "url": "https://files.pythonhosted.org/packages/17/5c/538c6de4aa9dfb1f5e568c0ae6284a44532f452e3acec05b91d23aad3733/python_datamodel-0.7.4-cp313-cp313-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "76244c7895e4a512417b18fce5236b8dc0aa422d189a57753fb3df6f21bd0cd4",
                "md5": "1030e2e5638a906a6757c35fd37bafcd",
                "sha256": "d7ab593fa8faa5460a1b23a0f7d12ffbd4fbe3967db1145adaeb8119fdae8f66"
            },
            "downloads": -1,
            "filename": "python_datamodel-0.7.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "1030e2e5638a906a6757c35fd37bafcd",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.9.13",
            "size": 2174867,
            "upload_time": "2024-11-06T23:44:10",
            "upload_time_iso_8601": "2024-11-06T23:44:10.842326Z",
            "url": "https://files.pythonhosted.org/packages/76/24/4c7895e4a512417b18fce5236b8dc0aa422d189a57753fb3df6f21bd0cd4/python_datamodel-0.7.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2622490555220734ed76f03cc8aced1e9cdc17a7d22cb3550cfcc994be5bdb95",
                "md5": "132305d743b3a3b6c414ab08645b9db4",
                "sha256": "81da515a81d12d2da9f6bc9e229680e76bf2965fea9a4e1af501580428330e7b"
            },
            "downloads": -1,
            "filename": "python_datamodel-0.7.4-cp39-cp39-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "132305d743b3a3b6c414ab08645b9db4",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.9.13",
            "size": 883823,
            "upload_time": "2024-11-06T23:44:19",
            "upload_time_iso_8601": "2024-11-06T23:44:19.130544Z",
            "url": "https://files.pythonhosted.org/packages/26/22/490555220734ed76f03cc8aced1e9cdc17a7d22cb3550cfcc994be5bdb95/python_datamodel-0.7.4-cp39-cp39-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e3f01ac2a1d0157797be5716985cae1f55d66a95dafcfde0eba8394bfa294a70",
                "md5": "cc729d3fa55df2f84ffa61a6a6899c5e",
                "sha256": "8c33b6908c0f3b6f7082b2b717558842c610a5213d1b9c4059c84e8407d23a6c"
            },
            "downloads": -1,
            "filename": "python_datamodel-0.7.4-pp310-pypy310_pp73-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "cc729d3fa55df2f84ffa61a6a6899c5e",
            "packagetype": "bdist_wheel",
            "python_version": "pp310",
            "requires_python": ">=3.9.13",
            "size": 835110,
            "upload_time": "2024-11-06T23:44:20",
            "upload_time_iso_8601": "2024-11-06T23:44:20.800928Z",
            "url": "https://files.pythonhosted.org/packages/e3/f0/1ac2a1d0157797be5716985cae1f55d66a95dafcfde0eba8394bfa294a70/python_datamodel-0.7.4-pp310-pypy310_pp73-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5ab05763a80cd244959742aa22381ab9f9aaaa1b74c9984328344bd698b95b3f",
                "md5": "2811bc8eb166a127134b74627e1ea44f",
                "sha256": "7e5dd17e2da1f0b78970263a04f4e35dc57436f59e2dc48c5822a52a59111456"
            },
            "downloads": -1,
            "filename": "python_datamodel-0.7.4-pp39-pypy39_pp73-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "2811bc8eb166a127134b74627e1ea44f",
            "packagetype": "bdist_wheel",
            "python_version": "pp39",
            "requires_python": ">=3.9.13",
            "size": 834831,
            "upload_time": "2024-11-06T23:44:22",
            "upload_time_iso_8601": "2024-11-06T23:44:22.982950Z",
            "url": "https://files.pythonhosted.org/packages/5a/b0/5763a80cd244959742aa22381ab9f9aaaa1b74c9984328344bd698b95b3f/python_datamodel-0.7.4-pp39-pypy39_pp73-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-06 23:44:04",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "phenobarbital",
    "github_project": "python-datamodel",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "python-datamodel"
}
        
Elapsed time: 0.80901s