python-hiddenmarkov


Namepython-hiddenmarkov JSON
Version 0.1.3 PyPI version JSON
download
home_pagehttps://github.com/neosatrapahereje/hiddenmarkov
SummaryA simple Python package for Hidden Markov Models
upload_time2022-11-09 00:30:44
maintainer
docs_urlNone
authorCarlos Cancino-Chacón, Silvan Peter
requires_python>=3.6
licenseMIT
keywords hmm hidden_markov_models
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# hiddenmarkov

[![PyPI version](https://badge.fury.io/py/python-hiddenmarkov.svg)](https://badge.fury.io/py/python-hiddenmarkov)

A simple Python library for Hidden Markov Models.

This library was created for educational purposes and does not aim to have the most efficient implementation.

## Setup

Simple installation

```
pip install python-hiddenmarkov
```

Develop version
```bash
git clone https://github.com/neosatrapahereje/hiddenmarkov.git
cd hiddenmarkov
pip install -e .
```

## Usage

Example from [Wikipedia](https://en.wikipedia.org/wiki/Viterbi_algorithm#Example)

```python
import numpy as np
from hiddenmarkov import CategoricalObservationModel, ConstantTransitionModel, HMM

obs = ("normal", "cold", "dizzy")
observations = ("normal", "cold", "dizzy")
states = ("Healthy", "Fever")
observation_probabilities = np.array([[0.5, 0.1], [0.4, 0.3], [0.1, 0.6]])
transition_probabilities = np.array([[0.7, 0.3], [0.4, 0.6]])

observation_model = CategoricalObservationModel(
	observation_probabilities, obs
)

init_distribution = np.array([0.6, 0.4])

transition_model = ConstantTransitionModel(
	transition_probabilities, init_distribution
)

hmm = HMM(observation_model, transition_model, state_space=states)

path, prob = hmm.find_best_sequence(observations, log_probabilities=False)
print("Example Wikipedia")
print("Best sequence", path)
print("Expected Sequence", ["Healthy", "Healthy", "Fever"])
print("Sequence probability", prob)
print("Expected probability", 0.01512)
```

## Licence

The code in this package is licensed under the MIT Licence. For details,
please see the [LICENSE](https://github.com/neosatrapahereje/hiddenmarkov/blob/main/LICENSE) file.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/neosatrapahereje/hiddenmarkov",
    "name": "python-hiddenmarkov",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "hmm hidden_Markov_models",
    "author": "Carlos Cancino-Chac\u00f3n, Silvan Peter",
    "author_email": "carloscancinochacon@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/91/31/5185a1d366b314924977fba773bee745b9eb2cf51085b4fc42f72075e089/python-hiddenmarkov-0.1.3.tar.gz",
    "platform": null,
    "description": "\n# hiddenmarkov\n\n[![PyPI version](https://badge.fury.io/py/python-hiddenmarkov.svg)](https://badge.fury.io/py/python-hiddenmarkov)\n\nA simple Python library for Hidden Markov Models.\n\nThis library was created for educational purposes and does not aim to have the most efficient implementation.\n\n## Setup\n\nSimple installation\n\n```\npip install python-hiddenmarkov\n```\n\nDevelop version\n```bash\ngit clone https://github.com/neosatrapahereje/hiddenmarkov.git\ncd hiddenmarkov\npip install -e .\n```\n\n## Usage\n\nExample from [Wikipedia](https://en.wikipedia.org/wiki/Viterbi_algorithm#Example)\n\n```python\nimport numpy as np\nfrom hiddenmarkov import CategoricalObservationModel, ConstantTransitionModel, HMM\n\nobs = (\"normal\", \"cold\", \"dizzy\")\nobservations = (\"normal\", \"cold\", \"dizzy\")\nstates = (\"Healthy\", \"Fever\")\nobservation_probabilities = np.array([[0.5, 0.1], [0.4, 0.3], [0.1, 0.6]])\ntransition_probabilities = np.array([[0.7, 0.3], [0.4, 0.6]])\n\nobservation_model = CategoricalObservationModel(\n\tobservation_probabilities, obs\n)\n\ninit_distribution = np.array([0.6, 0.4])\n\ntransition_model = ConstantTransitionModel(\n\ttransition_probabilities, init_distribution\n)\n\nhmm = HMM(observation_model, transition_model, state_space=states)\n\npath, prob = hmm.find_best_sequence(observations, log_probabilities=False)\nprint(\"Example Wikipedia\")\nprint(\"Best sequence\", path)\nprint(\"Expected Sequence\", [\"Healthy\", \"Healthy\", \"Fever\"])\nprint(\"Sequence probability\", prob)\nprint(\"Expected probability\", 0.01512)\n```\n\n## Licence\n\nThe code in this package is licensed under the MIT Licence. For details,\nplease see the [LICENSE](https://github.com/neosatrapahereje/hiddenmarkov/blob/main/LICENSE) file.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A simple Python package for Hidden Markov Models",
    "version": "0.1.3",
    "project_urls": {
        "Homepage": "https://github.com/neosatrapahereje/hiddenmarkov"
    },
    "split_keywords": [
        "hmm",
        "hidden_markov_models"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "91315185a1d366b314924977fba773bee745b9eb2cf51085b4fc42f72075e089",
                "md5": "5476ed20ea9bf005d5f4684107b0c208",
                "sha256": "39a2a34917c9bc009146cebb4955a0d23743dba7bcb13a6ab44529108bafbe0e"
            },
            "downloads": -1,
            "filename": "python-hiddenmarkov-0.1.3.tar.gz",
            "has_sig": false,
            "md5_digest": "5476ed20ea9bf005d5f4684107b0c208",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 8845,
            "upload_time": "2022-11-09T00:30:44",
            "upload_time_iso_8601": "2022-11-09T00:30:44.546910Z",
            "url": "https://files.pythonhosted.org/packages/91/31/5185a1d366b314924977fba773bee745b9eb2cf51085b4fc42f72075e089/python-hiddenmarkov-0.1.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-11-09 00:30:44",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "neosatrapahereje",
    "github_project": "hiddenmarkov",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "python-hiddenmarkov"
}
        
Elapsed time: 0.61728s