python-smi


Namepython-smi JSON
Version 0.0.2 PyPI version JSON
download
home_pagehttps://github.com/AnswerDotAI/py-smi
SummaryConvenient access to `pynvml` (the library behind `nvidia-smi`)
upload_time2024-10-18 20:48:58
maintainerNone
docs_urlNone
authorJeremy Howard
requires_python>=3.9
licenseApache Software License 2.0
keywords nbdev jupyter notebook python
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # py_smi

<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->

## Installation

Install latest from pypi:

``` sh
$ pip install python-smi
```

Links:

- [repo](https://github.com/AnswerDotAI/py-smi)
- [docs](https://AnswerDotAI.github.io/py-smi/)
- [pypi](https://pypi.org/project/python-smi/)

## How to use

Here’s a quick demo of all the methods available:

``` python
from py_smi import NVML
```

``` python
nv = NVML()
nv.driver_version, nv.cuda_version
```

    ('535.183.06', '12.2')

All methods have a single parameter, which is the index of the GPU to
get information about.

``` python
nv.info(0)
```

    _Info(name='NVIDIA RTX A6000', serial='1322123048138', uuid='GPU-61e56e6f-2a64-c0f4-b26c-ab3ead0eed5b', persistence_mode=1, bus_id='00000000:01:00.0', display_active=0, performance_state=8, fan_speed=30, temperature=32, compute_mode=0)

``` python
[nv.mem(i) for i in range(3)]
```

    [_Memory(free=2193.25, total=49140.0, used=46946.75),
     _Memory(free=48672.4375, total=49140.0, used=467.5625),
     _Memory(free=48672.4375, total=49140.0, used=467.5625)]

The index defaults to `0`.

``` python
nv.utilization()
```

    _Utilization(gpu=0, memory=0, enc=0, dec=0)

``` python
nv.power()
```

    _Power(usage=17.22, limit=300.0)

``` python
nv.clocks()
```

    _Clocks(graphics=0, sm=0, mem=405)

``` python
nv.pcie_throughput()
```

    _PCIeThroughput(rx=0.0, tx=0.0)

``` python
nv.processes()
```

    [_ProcessInfo(pid=201084, name='/home/jhoward/miniconda3/bin/python3.12', memory=46476.0)]

``` python
nv.dmon()
```

    _DMon(pwr=17.039, gtemp=32, sm=0, mem=0, enc=0, dec=0, mclk=405, pclk=0)

## Contributing

I’ve added the obvious pieces based on how I use `nvidia-smi`, but I’m
sure there’s missing useful features, so PRs are welcome! Note that this
is an [nbdev](https://nbdev.fast.ai/getting_started.html) project so the
source notebooks must be changed, rather than editing .py or .md files
directly.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/AnswerDotAI/py-smi",
    "name": "python-smi",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "nbdev jupyter notebook python",
    "author": "Jeremy Howard",
    "author_email": "info@fast.ai",
    "download_url": "https://files.pythonhosted.org/packages/b7/a3/f0e71c29f82fa7913981a68970b2c5bd36b8161fb55673fd0174f04d0428/python_smi-0.0.2.tar.gz",
    "platform": null,
    "description": "# py_smi\n\n<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->\n\n## Installation\n\nInstall latest from pypi:\n\n``` sh\n$ pip install python-smi\n```\n\nLinks:\n\n- [repo](https://github.com/AnswerDotAI/py-smi)\n- [docs](https://AnswerDotAI.github.io/py-smi/)\n- [pypi](https://pypi.org/project/python-smi/)\n\n## How to use\n\nHere\u2019s a quick demo of all the methods available:\n\n``` python\nfrom py_smi import NVML\n```\n\n``` python\nnv = NVML()\nnv.driver_version, nv.cuda_version\n```\n\n    ('535.183.06', '12.2')\n\nAll methods have a single parameter, which is the index of the GPU to\nget information about.\n\n``` python\nnv.info(0)\n```\n\n    _Info(name='NVIDIA RTX A6000', serial='1322123048138', uuid='GPU-61e56e6f-2a64-c0f4-b26c-ab3ead0eed5b', persistence_mode=1, bus_id='00000000:01:00.0', display_active=0, performance_state=8, fan_speed=30, temperature=32, compute_mode=0)\n\n``` python\n[nv.mem(i) for i in range(3)]\n```\n\n    [_Memory(free=2193.25, total=49140.0, used=46946.75),\n     _Memory(free=48672.4375, total=49140.0, used=467.5625),\n     _Memory(free=48672.4375, total=49140.0, used=467.5625)]\n\nThe index defaults to `0`.\n\n``` python\nnv.utilization()\n```\n\n    _Utilization(gpu=0, memory=0, enc=0, dec=0)\n\n``` python\nnv.power()\n```\n\n    _Power(usage=17.22, limit=300.0)\n\n``` python\nnv.clocks()\n```\n\n    _Clocks(graphics=0, sm=0, mem=405)\n\n``` python\nnv.pcie_throughput()\n```\n\n    _PCIeThroughput(rx=0.0, tx=0.0)\n\n``` python\nnv.processes()\n```\n\n    [_ProcessInfo(pid=201084, name='/home/jhoward/miniconda3/bin/python3.12', memory=46476.0)]\n\n``` python\nnv.dmon()\n```\n\n    _DMon(pwr=17.039, gtemp=32, sm=0, mem=0, enc=0, dec=0, mclk=405, pclk=0)\n\n## Contributing\n\nI\u2019ve added the obvious pieces based on how I use `nvidia-smi`, but I\u2019m\nsure there\u2019s missing useful features, so PRs are welcome! Note that this\nis an [nbdev](https://nbdev.fast.ai/getting_started.html) project so the\nsource notebooks must be changed, rather than editing .py or .md files\ndirectly.\n",
    "bugtrack_url": null,
    "license": "Apache Software License 2.0",
    "summary": "Convenient access to `pynvml` (the library behind `nvidia-smi`)",
    "version": "0.0.2",
    "project_urls": {
        "Homepage": "https://github.com/AnswerDotAI/py-smi"
    },
    "split_keywords": [
        "nbdev",
        "jupyter",
        "notebook",
        "python"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c10338ef44241ef005a2302ee66a0cdf8266edd42f5e6b8fd32873d3d9ef92c2",
                "md5": "3adcc8cc195210d79fb5c97b6eeb8615",
                "sha256": "9c884088f8e8f0cd836dc4823cc594fae75c3fcd97c417d7985939c28083bf01"
            },
            "downloads": -1,
            "filename": "python_smi-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3adcc8cc195210d79fb5c97b6eeb8615",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 9221,
            "upload_time": "2024-10-18T20:48:56",
            "upload_time_iso_8601": "2024-10-18T20:48:56.248788Z",
            "url": "https://files.pythonhosted.org/packages/c1/03/38ef44241ef005a2302ee66a0cdf8266edd42f5e6b8fd32873d3d9ef92c2/python_smi-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b7a3f0e71c29f82fa7913981a68970b2c5bd36b8161fb55673fd0174f04d0428",
                "md5": "04313a81e65107e54ee1c3216f8698fe",
                "sha256": "01bbf3b72409e5fd569f4bc13234afb2109af7f1c3c552b5ddc468c0b92dcbc2"
            },
            "downloads": -1,
            "filename": "python_smi-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "04313a81e65107e54ee1c3216f8698fe",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 9855,
            "upload_time": "2024-10-18T20:48:58",
            "upload_time_iso_8601": "2024-10-18T20:48:58.528865Z",
            "url": "https://files.pythonhosted.org/packages/b7/a3/f0e71c29f82fa7913981a68970b2c5bd36b8161fb55673fd0174f04d0428/python_smi-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-18 20:48:58",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "AnswerDotAI",
    "github_project": "py-smi",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "python-smi"
}
        
Elapsed time: 2.31005s