pytorch-crf
===========
Conditional random field in `PyTorch <http://pytorch.org/>`_.
.. image:: https://badge.fury.io/py/pytorch-crf.svg
:target: https://badge.fury.io/py/pytorch-crf
.. image:: https://travis-ci.org/kmkurn/pytorch-crf.svg?branch=master
:target: https://travis-ci.org/kmkurn/pytorch-crf
.. image:: https://coveralls.io/repos/github/kmkurn/pytorch-crf/badge.svg?branch=master
:target: https://coveralls.io/github/kmkurn/pytorch-crf?branch=master
.. image:: https://cdn.rawgit.com/syl20bnr/spacemacs/442d025779da2f62fc86c2082703697714db6514/assets/spacemacs-badge.svg
:target: http://spacemacs.org
This package provides an implementation of `conditional random field
<https://en.wikipedia.org/wiki/Conditional_random_field>`_ (CRF) in PyTorch.
This implementation borrows mostly from `AllenNLP CRF module
<https://github.com/allenai/allennlp/blob/master/allennlp/modules/conditional_ra
ndom_field.py>`_ with some modifications.
Documentation
=============
https://pytorch-crf.readthedocs.io/
License
=======
MIT
Contributing
============
Contributions are welcome! Please follow these instructions to install
dependencies and running the tests and linter.
Installing dependencies
-----------------------
Make sure you setup a virtual environment with Python and PyTorch
installed. Then, install all the dependencies in ``requirements.txt`` file and
install this package in development mode.
::
pip install -r requirements.txt
pip install -e .
Setup pre-commit hook
---------------------
Simply run::
ln -s ../../pre-commit.sh .git/hooks/pre-commit
Running tests
-------------
Run ``pytest`` in the project root directory.
Running linter
--------------
Run ``flake8`` in the project root directory. This will also run ``mypy``,
thanks to ``flake8-mypy`` package.
Raw data
{
"_id": null,
"home_page": "https://github.com/kmkurn/pytorch-crf",
"name": "pytorch-crf",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6, <4",
"maintainer_email": "",
"keywords": "torch",
"author": "Kemal Kurniawan",
"author_email": "kemal@kkurniawan.com",
"download_url": "https://files.pythonhosted.org/packages/e2/8c/aa58618f8c9cc8b2ddd22d4e700028101ec331d4c65c8cca663844a9dc24/pytorch-crf-0.7.2.tar.gz",
"platform": "",
"description": "pytorch-crf\n===========\n\nConditional random field in `PyTorch <http://pytorch.org/>`_.\n\n.. image:: https://badge.fury.io/py/pytorch-crf.svg\n :target: https://badge.fury.io/py/pytorch-crf\n\n.. image:: https://travis-ci.org/kmkurn/pytorch-crf.svg?branch=master\n :target: https://travis-ci.org/kmkurn/pytorch-crf\n\n.. image:: https://coveralls.io/repos/github/kmkurn/pytorch-crf/badge.svg?branch=master\n :target: https://coveralls.io/github/kmkurn/pytorch-crf?branch=master\n\n.. image:: https://cdn.rawgit.com/syl20bnr/spacemacs/442d025779da2f62fc86c2082703697714db6514/assets/spacemacs-badge.svg\n :target: http://spacemacs.org\n\nThis package provides an implementation of `conditional random field\n<https://en.wikipedia.org/wiki/Conditional_random_field>`_ (CRF) in PyTorch.\nThis implementation borrows mostly from `AllenNLP CRF module\n<https://github.com/allenai/allennlp/blob/master/allennlp/modules/conditional_ra\nndom_field.py>`_ with some modifications.\n\nDocumentation\n=============\n\nhttps://pytorch-crf.readthedocs.io/\n\nLicense\n=======\n\nMIT\n\nContributing\n============\n\nContributions are welcome! Please follow these instructions to install\ndependencies and running the tests and linter.\n\nInstalling dependencies\n-----------------------\n\nMake sure you setup a virtual environment with Python and PyTorch\ninstalled. Then, install all the dependencies in ``requirements.txt`` file and\ninstall this package in development mode.\n\n::\n\n pip install -r requirements.txt\n pip install -e .\n\nSetup pre-commit hook\n---------------------\n\nSimply run::\n\n ln -s ../../pre-commit.sh .git/hooks/pre-commit\n\nRunning tests\n-------------\n\nRun ``pytest`` in the project root directory.\n\nRunning linter\n--------------\n\nRun ``flake8`` in the project root directory. This will also run ``mypy``,\nthanks to ``flake8-mypy`` package.\n\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Conditional random field in PyTorch",
"version": "0.7.2",
"split_keywords": [
"torch"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "967d4c4688e26ea015fc118a0327e5726e6596836abce9182d3738be8ec2e32a",
"md5": "9151ae3f2e855ff0821f76c52f8ce145",
"sha256": "1b2d7d5eea3255f6e0cac09ab8b645472e76ff70d9333bc88762cf7317a4992d"
},
"downloads": -1,
"filename": "pytorch_crf-0.7.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "9151ae3f2e855ff0821f76c52f8ce145",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6, <4",
"size": 9501,
"upload_time": "2019-02-04T01:44:14",
"upload_time_iso_8601": "2019-02-04T01:44:14.387868Z",
"url": "https://files.pythonhosted.org/packages/96/7d/4c4688e26ea015fc118a0327e5726e6596836abce9182d3738be8ec2e32a/pytorch_crf-0.7.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e28caa58618f8c9cc8b2ddd22d4e700028101ec331d4c65c8cca663844a9dc24",
"md5": "c69b5b9ff6fe52cc06da30333a101259",
"sha256": "e6456e22ccfc99a3d4fe1e03e996103b1b39e9830bf3c7e12e7a9077d3be866d"
},
"downloads": -1,
"filename": "pytorch-crf-0.7.2.tar.gz",
"has_sig": false,
"md5_digest": "c69b5b9ff6fe52cc06da30333a101259",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6, <4",
"size": 5996,
"upload_time": "2019-02-04T01:44:15",
"upload_time_iso_8601": "2019-02-04T01:44:15.850806Z",
"url": "https://files.pythonhosted.org/packages/e2/8c/aa58618f8c9cc8b2ddd22d4e700028101ec331d4c65c8cca663844a9dc24/pytorch-crf-0.7.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2019-02-04 01:44:15",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "kmkurn",
"github_project": "pytorch-crf",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "pytorch-crf"
}