pytorch-dataset


Namepytorch-dataset JSON
Version 0.0.4 PyPI version JSON
download
home_pagehttps://github.com/Agora-X/Pytorch-Dataset
SummaryPytorch Dataset - Pytorch
upload_time2023-09-15 22:06:36
maintainer
docs_urlNone
authorKye Gomez
requires_python>=3.6,<4.0
licenseMIT
keywords artificial intelligence deep learning optimizers prompt engineering
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)

# Pytorch-Dataset
A PyTorch Code Dataset for Cutting-Edge Fine-tuning



## Installation
You can install the package using pip

```bash
pip install pytorch-dataset
```

# Usage
Downloader that downloads and unzips each repository in an account
```python

from pytorch import GitHubRepoDownloader

downloader = GitHubRepoDownloader(username="lucidrains", download_dir="lucidrains_repositories")
downloader.download_repositories()
```

Processor that cleans, formats, and submits the cleaned dataset to huggingface
```python
from pytorch import CodeDatasetBuilder

code_builder = CodeDatasetBuilder("lucidrains_repositories")
code_builder.save_dataset("lucidrains_python_code_dataset")
code_builder.push_to_hub("lucidrains_python_code_dataset", organization="kye")

```
# License
MIT




            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Agora-X/Pytorch-Dataset",
    "name": "pytorch-dataset",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6,<4.0",
    "maintainer_email": "",
    "keywords": "artificial intelligence,deep learning,optimizers,Prompt Engineering",
    "author": "Kye Gomez",
    "author_email": "kye@apac.ai",
    "download_url": "https://files.pythonhosted.org/packages/12/8c/0ccc030c799d5e8f93cd4cc4116061649575938a14237ef0765ec0cb895a/pytorch_dataset-0.0.4.tar.gz",
    "platform": null,
    "description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# Pytorch-Dataset\nA PyTorch Code Dataset for Cutting-Edge Fine-tuning\n\n\n\n## Installation\nYou can install the package using pip\n\n```bash\npip install pytorch-dataset\n```\n\n# Usage\nDownloader that downloads and unzips each repository in an account\n```python\n\nfrom pytorch import GitHubRepoDownloader\n\ndownloader = GitHubRepoDownloader(username=\"lucidrains\", download_dir=\"lucidrains_repositories\")\ndownloader.download_repositories()\n```\n\nProcessor that cleans, formats, and submits the cleaned dataset to huggingface\n```python\nfrom pytorch import CodeDatasetBuilder\n\ncode_builder = CodeDatasetBuilder(\"lucidrains_repositories\")\ncode_builder.save_dataset(\"lucidrains_python_code_dataset\")\ncode_builder.push_to_hub(\"lucidrains_python_code_dataset\", organization=\"kye\")\n\n```\n# License\nMIT\n\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Pytorch Dataset - Pytorch",
    "version": "0.0.4",
    "project_urls": {
        "Homepage": "https://github.com/Agora-X/Pytorch-Dataset",
        "Repository": "https://github.com/Agora-X/Pytorch-Dataset"
    },
    "split_keywords": [
        "artificial intelligence",
        "deep learning",
        "optimizers",
        "prompt engineering"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "743058bc378d038083c0b0499b5f23285faf17ffbd2aa367d76dd5310244238c",
                "md5": "78f3644d7a2f24c23a2882367d27a306",
                "sha256": "41b98a61c71ca72d772c9d783ff851b8de14f4773fe1579ec9952cfa7daeed6a"
            },
            "downloads": -1,
            "filename": "pytorch_dataset-0.0.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "78f3644d7a2f24c23a2882367d27a306",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6,<4.0",
            "size": 5936,
            "upload_time": "2023-09-15T22:06:34",
            "upload_time_iso_8601": "2023-09-15T22:06:34.708693Z",
            "url": "https://files.pythonhosted.org/packages/74/30/58bc378d038083c0b0499b5f23285faf17ffbd2aa367d76dd5310244238c/pytorch_dataset-0.0.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "128c0ccc030c799d5e8f93cd4cc4116061649575938a14237ef0765ec0cb895a",
                "md5": "5e42fb06c6c7970ab5a6d0c00063a081",
                "sha256": "376f68737a66b4cb67b4446ab8c415206e22596f6023e8bac8537669ff2b1b65"
            },
            "downloads": -1,
            "filename": "pytorch_dataset-0.0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "5e42fb06c6c7970ab5a6d0c00063a081",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6,<4.0",
            "size": 4600,
            "upload_time": "2023-09-15T22:06:36",
            "upload_time_iso_8601": "2023-09-15T22:06:36.776977Z",
            "url": "https://files.pythonhosted.org/packages/12/8c/0ccc030c799d5e8f93cd4cc4116061649575938a14237ef0765ec0cb895a/pytorch_dataset-0.0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-15 22:06:36",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Agora-X",
    "github_project": "Pytorch-Dataset",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "pytorch-dataset"
}
        
Elapsed time: 0.15339s