Name | pytorch-iga JSON |
Version |
0.0.3
JSON |
| download |
home_page | |
Summary | A pytorch model training protocol for environment invariant deployment |
upload_time | 2023-09-20 01:54:45 |
maintainer | |
docs_url | None |
author | |
requires_python | >=3.7 |
license | MIT |
keywords |
one
two
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
This is a PyTorch implementation of the Inter-environmental Gradient Alignment algorithm proposed by Koyama and Yamaguchi in their paper [Out-of-Distribution Generalization
with Maximal Invariant Predictor](https://arxiv.org/pdf/2008.01883v1.pdf)
## Quick start
Install pytorch-iga in the terminal:
```bash
pip install pytorch-iga
```
Import IGA in python:
```python
from iga import IGA
```
IGA is defined with the following parameters:
```python
IGA(model, optimizer, criterion, data, num_epochs, batch_size, lamda, verbose=10, device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
)
```
Parameters:
> model (torch.nn.Module): neural network model to be trained/tuned
optimizer (torch.optim): pytorch optimizer object such as torch.optim.SGD
criterion (function): loss function for model evaluation
data (list(torch.utils.Dataset)): a list of Datasets for each environment
num_epochs (int): number of training epochs
batch_size (int): number of data points per batch
lamda (float): importance weight of inter-environmental variance
verbose (int): number of iterations in each progress log
device (torch.device): optional, torch.device object, defaults to 'cuda' or 'cpu'
Returns:
> model (torch.nn.Module): updated torch model
IGA_loss (float): ending loss value
## Example
to be continued...
Raw data
{
"_id": null,
"home_page": "",
"name": "pytorch-iga",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "one,two",
"author": "",
"author_email": "Calvin Boyce <calvinrboyce1@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/87/43/dc9251e266e68895ff4544e699210696ff77d930c30ce306f3e3c6d1bcc5/pytorch-iga-0.0.3.tar.gz",
"platform": null,
"description": "This is a PyTorch implementation of the Inter-environmental Gradient Alignment algorithm proposed by Koyama and Yamaguchi in their paper [Out-of-Distribution Generalization\nwith Maximal Invariant Predictor](https://arxiv.org/pdf/2008.01883v1.pdf)\n\n## Quick start\nInstall pytorch-iga in the terminal:\n```bash\npip install pytorch-iga\n```\n\nImport IGA in python:\n\n```python\nfrom iga import IGA\n```\n\nIGA is defined with the following parameters:\n\n```python\nIGA(model, optimizer, criterion, data, num_epochs, batch_size, lamda, verbose=10, device=torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\"),\n)\n```\n\nParameters:\n> model (torch.nn.Module): neural network model to be trained/tuned\n optimizer (torch.optim): pytorch optimizer object such as torch.optim.SGD\n criterion (function): loss function for model evaluation\n data (list(torch.utils.Dataset)): a list of Datasets for each environment\n num_epochs (int): number of training epochs\n batch_size (int): number of data points per batch\n lamda (float): importance weight of inter-environmental variance\n verbose (int): number of iterations in each progress log\n device (torch.device): optional, torch.device object, defaults to 'cuda' or 'cpu'\n\nReturns:\n> model (torch.nn.Module): updated torch model\n IGA_loss (float): ending loss value\n \n## Example\nto be continued...\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A pytorch model training protocol for environment invariant deployment",
"version": "0.0.3",
"project_urls": null,
"split_keywords": [
"one",
"two"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "1e6bde1917be8a4381353c7a1c6dcd42d5559c1ca44ddb835c6d5ec4c8f5ce71",
"md5": "4212db0cf4ffb0e8cf50a4f7bff6f2e8",
"sha256": "fa7d83670f3c9d965c6bf58f2f18d7f2fc6197e2d05814fedf097bbe8d704e39"
},
"downloads": -1,
"filename": "pytorch_iga-0.0.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "4212db0cf4ffb0e8cf50a4f7bff6f2e8",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 3848,
"upload_time": "2023-09-20T01:54:43",
"upload_time_iso_8601": "2023-09-20T01:54:43.653853Z",
"url": "https://files.pythonhosted.org/packages/1e/6b/de1917be8a4381353c7a1c6dcd42d5559c1ca44ddb835c6d5ec4c8f5ce71/pytorch_iga-0.0.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8743dc9251e266e68895ff4544e699210696ff77d930c30ce306f3e3c6d1bcc5",
"md5": "f1eee0c488221ada1a6a6dbc98d94fbd",
"sha256": "6e43ce378b0d6022f7f99d460beb850d591b29eb32a56efbd99c947d526d2732"
},
"downloads": -1,
"filename": "pytorch-iga-0.0.3.tar.gz",
"has_sig": false,
"md5_digest": "f1eee0c488221ada1a6a6dbc98d94fbd",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 4257,
"upload_time": "2023-09-20T01:54:45",
"upload_time_iso_8601": "2023-09-20T01:54:45.108261Z",
"url": "https://files.pythonhosted.org/packages/87/43/dc9251e266e68895ff4544e699210696ff77d930c30ce306f3e3c6d1bcc5/pytorch-iga-0.0.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-09-20 01:54:45",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "pytorch-iga"
}