pytorch-lightning


Namepytorch-lightning JSON
Version 2.5.0.post0 PyPI version JSON
download
home_pagehttps://github.com/Lightning-AI/lightning
SummaryPyTorch Lightning is the lightweight PyTorch wrapper for ML researchers. Scale your models. Write less boilerplate.
upload_time2024-12-21 01:36:48
maintainerNone
docs_urlNone
authorLightning AI et al.
requires_python>=3.9
licenseApache-2.0
keywords deep learning pytorch ai
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">

<img src="https://pl-public-data.s3.amazonaws.com/assets_lightning/pytorch-lightning.png" width="400px">

**The lightweight PyTorch wrapper for high-performance AI research.
Scale your models, not the boilerplate.**

______________________________________________________________________

<p align="center">
  <a href="https://www.pytorchlightning.ai/">Website</a> •
  <a href="#key-features">Key Features</a> •
  <a href="#how-to-use">How To Use</a> •
  <a href="https://lightning.ai/docs/pytorch/stable/">Docs</a> •
  <a href="#examples">Examples</a> •
  <a href="#community">Community</a> •
  <a href="https://lightning.ai/">Lightning AI</a> •
  <a href="https://github.com/Lightning-AI/lightning/blob/master/LICENSE">License</a>
</p>

<!-- DO NOT ADD CONDA DOWNLOADS... README CHANGES MUST BE APPROVED BY EDEN OR WILL -->

[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/pytorch-lightning)](https://pypi.org/project/pytorch-lightning/)
[![PyPI Status](https://badge.fury.io/py/pytorch-lightning.svg)](https://badge.fury.io/py/pytorch-lightning)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/pytorch-lightning)](https://pepy.tech/project/pytorch-lightning)
[![Conda](https://img.shields.io/conda/v/conda-forge/pytorch-lightning?label=conda&color=success)](https://anaconda.org/conda-forge/pytorch-lightning)
[![DockerHub](https://img.shields.io/docker/pulls/pytorchlightning/pytorch_lightning.svg)](https://hub.docker.com/r/pytorchlightning/pytorch_lightning)
[![codecov](https://codecov.io/gh/Lightning-AI/pytorch-lightning/graph/badge.svg?token=SmzX8mnKlA)](https://codecov.io/gh/Lightning-AI/pytorch-lightning)

[![ReadTheDocs](https://readthedocs.org/projects/pytorch-lightning/badge/?version=2.5.0.post0)](https://lightning.ai/docs/pytorch/stable/)[![Discord](https://img.shields.io/discord/1077906959069626439?style=plastic)](https://discord.gg/VptPCZkGNa)
[![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/Lightning-AI/lightning/blob/master/LICENSE)

<!--
[![CodeFactor](https://www.codefactor.io/repository/github/Lightning-AI/lightning/badge)](https://www.codefactor.io/repository/github/Lightning-AI/lightning)
-->

</div>

###### \*Codecov is > 90%+ but build delays may show less

______________________________________________________________________

## PyTorch Lightning is just organized PyTorch

Lightning disentangles PyTorch code to decouple the science from the engineering.
![PT to PL](https://lightning.ai/docs/pytorch/stable/_static/images/general/pl_quick_start_full_compressed.gif)

______________________________________________________________________

## Lightning Design Philosophy

Lightning structures PyTorch code with these principles:

<div align="center">
  <img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/philosophies.jpg" max-height="250px">
</div>

Lightning forces the following structure to your code which makes it reusable and shareable:

- Research code (the LightningModule).
- Engineering code (you delete, and is handled by the Trainer).
- Non-essential research code (logging, etc... this goes in Callbacks).
- Data (use PyTorch DataLoaders or organize them into a LightningDataModule).

Once you do this, you can train on multiple-GPUs, TPUs, CPUs, HPUs and even in 16-bit precision without changing your code!

[Get started in just 15 minutes](https://lightning.ai/docs/pytorch/latest/starter/introduction.html)

______________________________________________________________________

## Continuous Integration

Lightning is rigorously tested across multiple CPUs, GPUs and TPUs and against major Python and PyTorch versions.

<details>
  <summary>Current build statuses</summary>

<center>

|       System / PyTorch ver.        |                                                    1.12                                                     | 1.13                                                                                                        | 2.0                                                                                                         | 2.1                                                                                                               |
| :--------------------------------: | :---------------------------------------------------------------------------------------------------------: | ----------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------- |
|        Linux py3.9 \[GPUs\]        |                                                                                                             |                                                                                                             |                                                                                                             | ![Build Status](https://dev.azure.com/Lightning-AI/lightning/_apis/build/status%2Fpytorch-lightning%20%28GPUs%29) |
|  Linux (multiple Python versions)  | ![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg) | ![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg) | ![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg) | ![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)       |
|   OSX (multiple Python versions)   | ![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg) | ![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg) | ![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg) | ![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)       |
| Windows (multiple Python versions) | ![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg) | ![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg) | ![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg) | ![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)       |

</center>
</details>

______________________________________________________________________

## How To Use

### Step 0: Install

Simple installation from PyPI

```bash
pip install pytorch-lightning
```

<!--  -->

### Step 1: Add these imports

```python
import os
import torch
from torch import nn
import torch.nn.functional as F
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader, random_split
from torchvision import transforms
import pytorch_lightning as pl
```

### Step 2: Define a LightningModule (nn.Module subclass)

A LightningModule defines a full *system* (ie: a GAN, autoencoder, BERT or a simple Image Classifier).

```python
class LitAutoEncoder(pl.LightningModule):
    def __init__(self):
        super().__init__()
        self.encoder = nn.Sequential(nn.Linear(28 * 28, 128), nn.ReLU(), nn.Linear(128, 3))
        self.decoder = nn.Sequential(nn.Linear(3, 128), nn.ReLU(), nn.Linear(128, 28 * 28))

    def forward(self, x):
        # in lightning, forward defines the prediction/inference actions
        embedding = self.encoder(x)
        return embedding

    def training_step(self, batch, batch_idx):
        # training_step defines the train loop. It is independent of forward
        x, _ = batch
        x = x.view(x.size(0), -1)
        z = self.encoder(x)
        x_hat = self.decoder(z)
        loss = F.mse_loss(x_hat, x)
        self.log("train_loss", loss)
        return loss

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
        return optimizer
```

**Note: Training_step defines the training loop. Forward defines how the LightningModule behaves during inference/prediction.**

### Step 3: Train!

```python
dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
train, val = random_split(dataset, [55000, 5000])

autoencoder = LitAutoEncoder()
trainer = pl.Trainer()
trainer.fit(autoencoder, DataLoader(train), DataLoader(val))
```

## Advanced features

Lightning has over [40+ advanced features](https://lightning.ai/docs/pytorch/stable/common/trainer.html#trainer-flags) designed for professional AI research at scale.

Here are some examples:

<div align="center">
  <img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/features_2.jpg" max-height="600px">
</div>

<details>
  <summary>Highlighted feature code snippets</summary>

```python
# 8 GPUs
# no code changes needed
trainer = Trainer(max_epochs=1, accelerator="gpu", devices=8)

# 256 GPUs
trainer = Trainer(max_epochs=1, accelerator="gpu", devices=8, num_nodes=32)
```

<summary>Train on TPUs without code changes</summary>

```python
# no code changes needed
trainer = Trainer(accelerator="tpu", devices=8)
```

<summary>16-bit precision</summary>

```python
# no code changes needed
trainer = Trainer(precision=16)
```

<summary>Experiment managers</summary>

```python
from pytorch_lightning import loggers

# tensorboard
trainer = Trainer(logger=TensorBoardLogger("logs/"))

# weights and biases
trainer = Trainer(logger=loggers.WandbLogger())

# comet
trainer = Trainer(logger=loggers.CometLogger())

# mlflow
trainer = Trainer(logger=loggers.MLFlowLogger())

# neptune
trainer = Trainer(logger=loggers.NeptuneLogger())

# ... and dozens more
```

<summary>EarlyStopping</summary>

```python
es = EarlyStopping(monitor="val_loss")
trainer = Trainer(callbacks=[es])
```

<summary>Checkpointing</summary>

```python
checkpointing = ModelCheckpoint(monitor="val_loss")
trainer = Trainer(callbacks=[checkpointing])
```

<summary>Export to torchscript (JIT) (production use)</summary>

```python
# torchscript
autoencoder = LitAutoEncoder()
torch.jit.save(autoencoder.to_torchscript(), "model.pt")
```

<summary>Export to ONNX (production use)</summary>

```python
autoencoder = LitAutoEncoder()
input_sample = torch.randn((1, 64))
with tempfile.NamedTemporaryFile(suffix=".onnx", delete=False) as tmpfile:
    autoencoder.to_onnx(tmpfile.name, input_sample, export_params=True)
```

</details>

### Pro-level control of optimization (advanced users)

For complex/professional level work, you have optional full control of the optimizers.

```python
class LitAutoEncoder(pl.LightningModule):
    def __init__(self):
        super().__init__()
        self.automatic_optimization = False

    def training_step(self, batch, batch_idx):
        # access your optimizers with use_pl_optimizer=False. Default is True
        opt_a, opt_b = self.optimizers(use_pl_optimizer=True)

        loss_a = ...
        self.manual_backward(loss_a, opt_a)
        opt_a.step()
        opt_a.zero_grad()

        loss_b = ...
        self.manual_backward(loss_b, opt_b, retain_graph=True)
        self.manual_backward(loss_b, opt_b)
        opt_b.step()
        opt_b.zero_grad()
```

______________________________________________________________________

## Advantages over unstructured PyTorch

- Models become hardware agnostic
- Code is clear to read because engineering code is abstracted away
- Easier to reproduce
- Make fewer mistakes because lightning handles the tricky engineering
- Keeps all the flexibility (LightningModules are still PyTorch modules), but removes a ton of boilerplate
- Lightning has dozens of integrations with popular machine learning tools.
- [Tested rigorously with every new PR](https://github.com/Lightning-AI/lightning/tree/master/tests). We test every combination of PyTorch and Python supported versions, every OS, multi GPUs and even TPUs.
- Minimal running speed overhead (about 300 ms per epoch compared with pure PyTorch).

______________________________________________________________________

## Examples

###### Self-supervised Learning

- [CPC transforms](https://lightning-bolts.readthedocs.io/en/stable/transforms/self_supervised.html#cpc-transforms)
- [Moco v2 transforms](https://lightning-bolts.readthedocs.io/en/stable/transforms/self_supervised.html#moco-v2-transforms)
- [SimCLR transforms](https://lightning-bolts.readthedocs.io/en/stable/transforms/self_supervised.html#simclr-transforms)

###### Convolutional Architectures

- [GPT-2](https://lightning-bolts.readthedocs.io/en/stable/models/convolutional.html#gpt-2)
- [UNet](https://lightning-bolts.readthedocs.io/en/stable/models/convolutional.html#unet)

###### Reinforcement Learning

- [DQN Loss](https://lightning-bolts.readthedocs.io/en/stable/losses.html#dqn-loss)
- [Double DQN Loss](https://lightning-bolts.readthedocs.io/en/stable/losses.html#double-dqn-loss)
- [Per DQN Loss](https://lightning-bolts.readthedocs.io/en/stable/losses.html#per-dqn-loss)

###### GANs

- [Basic GAN](https://lightning-bolts.readthedocs.io/en/stable/models/gans.html#basic-gan)
- [DCGAN](https://lightning-bolts.readthedocs.io/en/stable/models/gans.html#dcgan)

###### Classic ML

- [Logistic Regression](https://lightning-bolts.readthedocs.io/en/stable/models/classic_ml.html#logistic-regression)
- [Linear Regression](https://lightning-bolts.readthedocs.io/en/stable/models/classic_ml.html#linear-regression)

______________________________________________________________________

## Community

The PyTorch Lightning community is maintained by

- [10+ core contributors](https://lightning.ai/docs/pytorch/stable/community/governance.html) who are all a mix of professional engineers, Research Scientists, and Ph.D. students from top AI labs.
- 680+ active community contributors.

Want to help us build Lightning and reduce boilerplate for thousands of researchers? [Learn how to make your first contribution here](https://devblog.pytorchlightning.ai/quick-contribution-guide-86d977171b3a)

PyTorch Lightning is also part of the [PyTorch ecosystem](https://pytorch.org/ecosystem/) which requires projects to have solid testing, documentation and support.

### Asking for help

If you have any questions please:

1. [Read the docs](https://lightning.ai/docs/pytorch/stable).
1. [Search through existing Discussions](https://github.com/Lightning-AI/lightning/discussions), or [add a new question](https://github.com/Lightning-AI/lightning/discussions/new)
1. [Join our Discord community](https://discord.gg/VptPCZkGNa).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Lightning-AI/lightning",
    "name": "pytorch-lightning",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "deep learning, pytorch, AI",
    "author": "Lightning AI et al.",
    "author_email": "pytorch@lightning.ai",
    "download_url": "https://files.pythonhosted.org/packages/6d/b1/3c1d08db3feb1dfcd5be1b9f2406455f3740f7525d7ea1b9244f67b11cb5/pytorch_lightning-2.5.0.post0.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n\n<img src=\"https://pl-public-data.s3.amazonaws.com/assets_lightning/pytorch-lightning.png\" width=\"400px\">\n\n**The lightweight PyTorch wrapper for high-performance AI research.\nScale your models, not the boilerplate.**\n\n______________________________________________________________________\n\n<p align=\"center\">\n  <a href=\"https://www.pytorchlightning.ai/\">Website</a> \u2022\n  <a href=\"#key-features\">Key Features</a> \u2022\n  <a href=\"#how-to-use\">How To Use</a> \u2022\n  <a href=\"https://lightning.ai/docs/pytorch/stable/\">Docs</a> \u2022\n  <a href=\"#examples\">Examples</a> \u2022\n  <a href=\"#community\">Community</a> \u2022\n  <a href=\"https://lightning.ai/\">Lightning AI</a> \u2022\n  <a href=\"https://github.com/Lightning-AI/lightning/blob/master/LICENSE\">License</a>\n</p>\n\n<!-- DO NOT ADD CONDA DOWNLOADS... README CHANGES MUST BE APPROVED BY EDEN OR WILL -->\n\n[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/pytorch-lightning)](https://pypi.org/project/pytorch-lightning/)\n[![PyPI Status](https://badge.fury.io/py/pytorch-lightning.svg)](https://badge.fury.io/py/pytorch-lightning)\n[![PyPI - Downloads](https://img.shields.io/pypi/dm/pytorch-lightning)](https://pepy.tech/project/pytorch-lightning)\n[![Conda](https://img.shields.io/conda/v/conda-forge/pytorch-lightning?label=conda&color=success)](https://anaconda.org/conda-forge/pytorch-lightning)\n[![DockerHub](https://img.shields.io/docker/pulls/pytorchlightning/pytorch_lightning.svg)](https://hub.docker.com/r/pytorchlightning/pytorch_lightning)\n[![codecov](https://codecov.io/gh/Lightning-AI/pytorch-lightning/graph/badge.svg?token=SmzX8mnKlA)](https://codecov.io/gh/Lightning-AI/pytorch-lightning)\n\n[![ReadTheDocs](https://readthedocs.org/projects/pytorch-lightning/badge/?version=2.5.0.post0)](https://lightning.ai/docs/pytorch/stable/)[![Discord](https://img.shields.io/discord/1077906959069626439?style=plastic)](https://discord.gg/VptPCZkGNa)\n[![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/Lightning-AI/lightning/blob/master/LICENSE)\n\n<!--\n[![CodeFactor](https://www.codefactor.io/repository/github/Lightning-AI/lightning/badge)](https://www.codefactor.io/repository/github/Lightning-AI/lightning)\n-->\n\n</div>\n\n###### \\*Codecov is > 90%+ but build delays may show less\n\n______________________________________________________________________\n\n## PyTorch Lightning is just organized PyTorch\n\nLightning disentangles PyTorch code to decouple the science from the engineering.\n![PT to PL](https://lightning.ai/docs/pytorch/stable/_static/images/general/pl_quick_start_full_compressed.gif)\n\n______________________________________________________________________\n\n## Lightning Design Philosophy\n\nLightning structures PyTorch code with these principles:\n\n<div align=\"center\">\n  <img src=\"https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/philosophies.jpg\" max-height=\"250px\">\n</div>\n\nLightning forces the following structure to your code which makes it reusable and shareable:\n\n- Research code (the LightningModule).\n- Engineering code (you delete, and is handled by the Trainer).\n- Non-essential research code (logging, etc... this goes in Callbacks).\n- Data (use PyTorch DataLoaders or organize them into a LightningDataModule).\n\nOnce you do this, you can train on multiple-GPUs, TPUs, CPUs, HPUs and even in 16-bit precision without changing your code!\n\n[Get started in just 15 minutes](https://lightning.ai/docs/pytorch/latest/starter/introduction.html)\n\n______________________________________________________________________\n\n## Continuous Integration\n\nLightning is rigorously tested across multiple CPUs, GPUs and TPUs and against major Python and PyTorch versions.\n\n<details>\n  <summary>Current build statuses</summary>\n\n<center>\n\n|       System / PyTorch ver.        |                                                    1.12                                                     | 1.13                                                                                                        | 2.0                                                                                                         | 2.1                                                                                                               |\n| :--------------------------------: | :---------------------------------------------------------------------------------------------------------: | ----------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------- |\n|        Linux py3.9 \\[GPUs\\]        |                                                                                                             |                                                                                                             |                                                                                                             | ![Build Status](https://dev.azure.com/Lightning-AI/lightning/_apis/build/status%2Fpytorch-lightning%20%28GPUs%29) |\n|  Linux (multiple Python versions)  | ![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg) | ![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg) | ![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg) | ![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)       |\n|   OSX (multiple Python versions)   | ![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg) | ![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg) | ![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg) | ![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)       |\n| Windows (multiple Python versions) | ![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg) | ![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg) | ![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg) | ![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)       |\n\n</center>\n</details>\n\n______________________________________________________________________\n\n## How To Use\n\n### Step 0: Install\n\nSimple installation from PyPI\n\n```bash\npip install pytorch-lightning\n```\n\n<!--  -->\n\n### Step 1: Add these imports\n\n```python\nimport os\nimport torch\nfrom torch import nn\nimport torch.nn.functional as F\nfrom torchvision.datasets import MNIST\nfrom torch.utils.data import DataLoader, random_split\nfrom torchvision import transforms\nimport pytorch_lightning as pl\n```\n\n### Step 2: Define a LightningModule (nn.Module subclass)\n\nA LightningModule defines a full *system* (ie: a GAN, autoencoder, BERT or a simple Image Classifier).\n\n```python\nclass LitAutoEncoder(pl.LightningModule):\n    def __init__(self):\n        super().__init__()\n        self.encoder = nn.Sequential(nn.Linear(28 * 28, 128), nn.ReLU(), nn.Linear(128, 3))\n        self.decoder = nn.Sequential(nn.Linear(3, 128), nn.ReLU(), nn.Linear(128, 28 * 28))\n\n    def forward(self, x):\n        # in lightning, forward defines the prediction/inference actions\n        embedding = self.encoder(x)\n        return embedding\n\n    def training_step(self, batch, batch_idx):\n        # training_step defines the train loop. It is independent of forward\n        x, _ = batch\n        x = x.view(x.size(0), -1)\n        z = self.encoder(x)\n        x_hat = self.decoder(z)\n        loss = F.mse_loss(x_hat, x)\n        self.log(\"train_loss\", loss)\n        return loss\n\n    def configure_optimizers(self):\n        optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)\n        return optimizer\n```\n\n**Note: Training_step defines the training loop. Forward defines how the LightningModule behaves during inference/prediction.**\n\n### Step 3: Train!\n\n```python\ndataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())\ntrain, val = random_split(dataset, [55000, 5000])\n\nautoencoder = LitAutoEncoder()\ntrainer = pl.Trainer()\ntrainer.fit(autoencoder, DataLoader(train), DataLoader(val))\n```\n\n## Advanced features\n\nLightning has over [40+ advanced features](https://lightning.ai/docs/pytorch/stable/common/trainer.html#trainer-flags) designed for professional AI research at scale.\n\nHere are some examples:\n\n<div align=\"center\">\n  <img src=\"https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/features_2.jpg\" max-height=\"600px\">\n</div>\n\n<details>\n  <summary>Highlighted feature code snippets</summary>\n\n```python\n# 8 GPUs\n# no code changes needed\ntrainer = Trainer(max_epochs=1, accelerator=\"gpu\", devices=8)\n\n# 256 GPUs\ntrainer = Trainer(max_epochs=1, accelerator=\"gpu\", devices=8, num_nodes=32)\n```\n\n<summary>Train on TPUs without code changes</summary>\n\n```python\n# no code changes needed\ntrainer = Trainer(accelerator=\"tpu\", devices=8)\n```\n\n<summary>16-bit precision</summary>\n\n```python\n# no code changes needed\ntrainer = Trainer(precision=16)\n```\n\n<summary>Experiment managers</summary>\n\n```python\nfrom pytorch_lightning import loggers\n\n# tensorboard\ntrainer = Trainer(logger=TensorBoardLogger(\"logs/\"))\n\n# weights and biases\ntrainer = Trainer(logger=loggers.WandbLogger())\n\n# comet\ntrainer = Trainer(logger=loggers.CometLogger())\n\n# mlflow\ntrainer = Trainer(logger=loggers.MLFlowLogger())\n\n# neptune\ntrainer = Trainer(logger=loggers.NeptuneLogger())\n\n# ... and dozens more\n```\n\n<summary>EarlyStopping</summary>\n\n```python\nes = EarlyStopping(monitor=\"val_loss\")\ntrainer = Trainer(callbacks=[es])\n```\n\n<summary>Checkpointing</summary>\n\n```python\ncheckpointing = ModelCheckpoint(monitor=\"val_loss\")\ntrainer = Trainer(callbacks=[checkpointing])\n```\n\n<summary>Export to torchscript (JIT) (production use)</summary>\n\n```python\n# torchscript\nautoencoder = LitAutoEncoder()\ntorch.jit.save(autoencoder.to_torchscript(), \"model.pt\")\n```\n\n<summary>Export to ONNX (production use)</summary>\n\n```python\nautoencoder = LitAutoEncoder()\ninput_sample = torch.randn((1, 64))\nwith tempfile.NamedTemporaryFile(suffix=\".onnx\", delete=False) as tmpfile:\n    autoencoder.to_onnx(tmpfile.name, input_sample, export_params=True)\n```\n\n</details>\n\n### Pro-level control of optimization (advanced users)\n\nFor complex/professional level work, you have optional full control of the optimizers.\n\n```python\nclass LitAutoEncoder(pl.LightningModule):\n    def __init__(self):\n        super().__init__()\n        self.automatic_optimization = False\n\n    def training_step(self, batch, batch_idx):\n        # access your optimizers with use_pl_optimizer=False. Default is True\n        opt_a, opt_b = self.optimizers(use_pl_optimizer=True)\n\n        loss_a = ...\n        self.manual_backward(loss_a, opt_a)\n        opt_a.step()\n        opt_a.zero_grad()\n\n        loss_b = ...\n        self.manual_backward(loss_b, opt_b, retain_graph=True)\n        self.manual_backward(loss_b, opt_b)\n        opt_b.step()\n        opt_b.zero_grad()\n```\n\n______________________________________________________________________\n\n## Advantages over unstructured PyTorch\n\n- Models become hardware agnostic\n- Code is clear to read because engineering code is abstracted away\n- Easier to reproduce\n- Make fewer mistakes because lightning handles the tricky engineering\n- Keeps all the flexibility (LightningModules are still PyTorch modules), but removes a ton of boilerplate\n- Lightning has dozens of integrations with popular machine learning tools.\n- [Tested rigorously with every new PR](https://github.com/Lightning-AI/lightning/tree/master/tests). We test every combination of PyTorch and Python supported versions, every OS, multi GPUs and even TPUs.\n- Minimal running speed overhead (about 300 ms per epoch compared with pure PyTorch).\n\n______________________________________________________________________\n\n## Examples\n\n###### Self-supervised Learning\n\n- [CPC transforms](https://lightning-bolts.readthedocs.io/en/stable/transforms/self_supervised.html#cpc-transforms)\n- [Moco v2 transforms](https://lightning-bolts.readthedocs.io/en/stable/transforms/self_supervised.html#moco-v2-transforms)\n- [SimCLR transforms](https://lightning-bolts.readthedocs.io/en/stable/transforms/self_supervised.html#simclr-transforms)\n\n###### Convolutional Architectures\n\n- [GPT-2](https://lightning-bolts.readthedocs.io/en/stable/models/convolutional.html#gpt-2)\n- [UNet](https://lightning-bolts.readthedocs.io/en/stable/models/convolutional.html#unet)\n\n###### Reinforcement Learning\n\n- [DQN Loss](https://lightning-bolts.readthedocs.io/en/stable/losses.html#dqn-loss)\n- [Double DQN Loss](https://lightning-bolts.readthedocs.io/en/stable/losses.html#double-dqn-loss)\n- [Per DQN Loss](https://lightning-bolts.readthedocs.io/en/stable/losses.html#per-dqn-loss)\n\n###### GANs\n\n- [Basic GAN](https://lightning-bolts.readthedocs.io/en/stable/models/gans.html#basic-gan)\n- [DCGAN](https://lightning-bolts.readthedocs.io/en/stable/models/gans.html#dcgan)\n\n###### Classic ML\n\n- [Logistic Regression](https://lightning-bolts.readthedocs.io/en/stable/models/classic_ml.html#logistic-regression)\n- [Linear Regression](https://lightning-bolts.readthedocs.io/en/stable/models/classic_ml.html#linear-regression)\n\n______________________________________________________________________\n\n## Community\n\nThe PyTorch Lightning community is maintained by\n\n- [10+ core contributors](https://lightning.ai/docs/pytorch/stable/community/governance.html) who are all a mix of professional engineers, Research Scientists, and Ph.D. students from top AI labs.\n- 680+ active community contributors.\n\nWant to help us build Lightning and reduce boilerplate for thousands of researchers? [Learn how to make your first contribution here](https://devblog.pytorchlightning.ai/quick-contribution-guide-86d977171b3a)\n\nPyTorch Lightning is also part of the [PyTorch ecosystem](https://pytorch.org/ecosystem/) which requires projects to have solid testing, documentation and support.\n\n### Asking for help\n\nIf you have any questions please:\n\n1. [Read the docs](https://lightning.ai/docs/pytorch/stable).\n1. [Search through existing Discussions](https://github.com/Lightning-AI/lightning/discussions), or [add a new question](https://github.com/Lightning-AI/lightning/discussions/new)\n1. [Join our Discord community](https://discord.gg/VptPCZkGNa).\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "PyTorch Lightning is the lightweight PyTorch wrapper for ML researchers. Scale your models. Write less boilerplate.",
    "version": "2.5.0.post0",
    "project_urls": {
        "Bug Tracker": "https://github.com/Lightning-AI/lightning/issues",
        "Documentation": "https://pytorch-lightning.rtfd.io/en/latest/",
        "Download": "https://github.com/Lightning-AI/lightning",
        "Homepage": "https://github.com/Lightning-AI/lightning",
        "Source Code": "https://github.com/Lightning-AI/lightning"
    },
    "split_keywords": [
        "deep learning",
        " pytorch",
        " ai"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "02df0c7e4582b74264fe2179e78fcdeb9313f680d40ffe1dd4b078da5a2cbf82",
                "md5": "086203f4e2858819a58b37ca9917ef57",
                "sha256": "c86bf4fded58b386f312f75337696a9b2d57077b858b3b9524400a03a0179b3a"
            },
            "downloads": -1,
            "filename": "pytorch_lightning-2.5.0.post0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "086203f4e2858819a58b37ca9917ef57",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 819282,
            "upload_time": "2024-12-21T01:36:45",
            "upload_time_iso_8601": "2024-12-21T01:36:45.445305Z",
            "url": "https://files.pythonhosted.org/packages/02/df/0c7e4582b74264fe2179e78fcdeb9313f680d40ffe1dd4b078da5a2cbf82/pytorch_lightning-2.5.0.post0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6db13c1d08db3feb1dfcd5be1b9f2406455f3740f7525d7ea1b9244f67b11cb5",
                "md5": "cea5f64fd67602a1b423e1d85be0866b",
                "sha256": "347235bf8573b4ebcf507a0dd755fcb9ce58c420c77220a9756a6edca0418532"
            },
            "downloads": -1,
            "filename": "pytorch_lightning-2.5.0.post0.tar.gz",
            "has_sig": false,
            "md5_digest": "cea5f64fd67602a1b423e1d85be0866b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 631450,
            "upload_time": "2024-12-21T01:36:48",
            "upload_time_iso_8601": "2024-12-21T01:36:48.590821Z",
            "url": "https://files.pythonhosted.org/packages/6d/b1/3c1d08db3feb1dfcd5be1b9f2406455f3740f7525d7ea1b9244f67b11cb5/pytorch_lightning-2.5.0.post0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-21 01:36:48",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Lightning-AI",
    "github_project": "lightning",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "pytorch-lightning"
}
        
Elapsed time: 1.10055s