pytrino


Namepytrino JSON
Version 0.0.5 PyPI version JSON
download
home_page
SummaryPytrino: A new way to numerically compute neutrino oscillations
upload_time2023-05-31 09:44:16
maintainer
docs_urlNone
authorBaalateja Kataru
requires_python
license
keywords probability neutrino oscillations
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ![](logo.png)

We use the recently discovered Eigenvalue-Eigenvector and Adjugate Identities to compute oscillation probabilities with minimal algorithmic steps.

# Usage


## Imports
```Python
import numpy as np
np.set_printoptions(precision=3)

from pytrino.oscprobs import OscProbIdentities
```

## Define your oscillation parameters

```Python
a = 0.2
theta12 = np.radians(33.2)
theta13 = np.radians(4.4)
theta23 = np.radians(46.1)
alpha = 0.026
delta = 50
deltacp = np.pi/6
```

## Compute probabilities
```Python
prob = OscProbIdentities(alpha, a, delta, deltacp, theta12, theta13, theta23)

print(prob.mat_angles_phase()) # prints mixing angles and phase in matter
# (29.988882340423384, 84.48628984963665, 3.5930259417910695, 44.188561816129464)

print(prob.PMNS()) # prints values of PMNS matrix elements
"""
[[ 0.849+0.000e+00j -0.297+0.000e+00j -0.062-4.318e-01j]
 [-0.335+8.346e-02j -0.92 -2.921e-02j -0.184+1.342e-18j]
 [ 0.01 +3.989e-01j  0.214-1.396e-01j -0.881-7.870e-19j]]
"""

print(prob.PMNS() @ prob.PMNS().H) # unitarity check
"""
[[1.000e+00-1.696e-22j 0.000e+00+1.561e-17j 6.939e-18+5.551e-17j]
 [0.000e+00-1.561e-17j 1.000e+00-4.276e-19j 5.551e-17-1.327e-18j]
 [1.388e-17-4.857e-17j 5.551e-17+0.000e+00j 1.000e+00-8.097e-19j]]
"""

print(prob.probabilities()) # prints all 9 probabilities
"""
[[0.97  0.015 0.014]
 [0.014 0.236 0.75 ]
 [0.015 0.749 0.236]]
"""
```

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "pytrino",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "probability,neutrino,oscillations",
    "author": "Baalateja Kataru",
    "author_email": "<kavesbteja@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/26/55/06618aa7575e2ee4d1119b2c00e509609046e0d29e1bfb2a9e56e3ef46d5/pytrino-0.0.5.tar.gz",
    "platform": null,
    "description": "![](logo.png)\r\n\r\nWe use the recently discovered Eigenvalue-Eigenvector and Adjugate Identities to compute oscillation probabilities with minimal algorithmic steps.\r\n\r\n# Usage\r\n\r\n\r\n## Imports\r\n```Python\r\nimport numpy as np\r\nnp.set_printoptions(precision=3)\r\n\r\nfrom pytrino.oscprobs import OscProbIdentities\r\n```\r\n\r\n## Define your oscillation parameters\r\n\r\n```Python\r\na = 0.2\r\ntheta12 = np.radians(33.2)\r\ntheta13 = np.radians(4.4)\r\ntheta23 = np.radians(46.1)\r\nalpha = 0.026\r\ndelta = 50\r\ndeltacp = np.pi/6\r\n```\r\n\r\n## Compute probabilities\r\n```Python\r\nprob = OscProbIdentities(alpha, a, delta, deltacp, theta12, theta13, theta23)\r\n\r\nprint(prob.mat_angles_phase()) # prints mixing angles and phase in matter\r\n# (29.988882340423384, 84.48628984963665, 3.5930259417910695, 44.188561816129464)\r\n\r\nprint(prob.PMNS()) # prints values of PMNS matrix elements\r\n\"\"\"\r\n[[ 0.849+0.000e+00j -0.297+0.000e+00j -0.062-4.318e-01j]\r\n [-0.335+8.346e-02j -0.92 -2.921e-02j -0.184+1.342e-18j]\r\n [ 0.01 +3.989e-01j  0.214-1.396e-01j -0.881-7.870e-19j]]\r\n\"\"\"\r\n\r\nprint(prob.PMNS() @ prob.PMNS().H) # unitarity check\r\n\"\"\"\r\n[[1.000e+00-1.696e-22j 0.000e+00+1.561e-17j 6.939e-18+5.551e-17j]\r\n [0.000e+00-1.561e-17j 1.000e+00-4.276e-19j 5.551e-17-1.327e-18j]\r\n [1.388e-17-4.857e-17j 5.551e-17+0.000e+00j 1.000e+00-8.097e-19j]]\r\n\"\"\"\r\n\r\nprint(prob.probabilities()) # prints all 9 probabilities\r\n\"\"\"\r\n[[0.97  0.015 0.014]\r\n [0.014 0.236 0.75 ]\r\n [0.015 0.749 0.236]]\r\n\"\"\"\r\n```\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Pytrino: A new way to numerically compute neutrino oscillations",
    "version": "0.0.5",
    "project_urls": null,
    "split_keywords": [
        "probability",
        "neutrino",
        "oscillations"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d7dcb78d913986df92fa6531bf38e3ee988d9b39c87d728620b9ff5f6098398c",
                "md5": "8a64361d4b7f03d501708aad0995e854",
                "sha256": "04898dc0b60475356d3f802975d3d9cba6e6aee11eb40f132ef418c96d3ac1be"
            },
            "downloads": -1,
            "filename": "pytrino-0.0.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8a64361d4b7f03d501708aad0995e854",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 4685,
            "upload_time": "2023-05-31T09:44:14",
            "upload_time_iso_8601": "2023-05-31T09:44:14.036437Z",
            "url": "https://files.pythonhosted.org/packages/d7/dc/b78d913986df92fa6531bf38e3ee988d9b39c87d728620b9ff5f6098398c/pytrino-0.0.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "265506618aa7575e2ee4d1119b2c00e509609046e0d29e1bfb2a9e56e3ef46d5",
                "md5": "6e3e94db71b6c306f1baac416b3b3054",
                "sha256": "ef985dfecb0806915bd17488a06504747d493bd4c78965f68f1b2ab1b1c3425e"
            },
            "downloads": -1,
            "filename": "pytrino-0.0.5.tar.gz",
            "has_sig": false,
            "md5_digest": "6e3e94db71b6c306f1baac416b3b3054",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4389,
            "upload_time": "2023-05-31T09:44:16",
            "upload_time_iso_8601": "2023-05-31T09:44:16.200079Z",
            "url": "https://files.pythonhosted.org/packages/26/55/06618aa7575e2ee4d1119b2c00e509609046e0d29e1bfb2a9e56e3ef46d5/pytrino-0.0.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-05-31 09:44:16",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "pytrino"
}
        
Elapsed time: 0.28151s