<<<<<<< HEAD
# pyturbo-analytics
=======
# PyTurbo: Unleashing the Speed of Data Analysis 🚀
PyTurbo is a high-performance Python library designed to dramatically accelerate data analysis tasks by leveraging multiple computing paradigms including multithreading, multiprocessing, GPU acceleration, and compiled code optimization.
## Features
- **Fast DataFrame Operations**: Parallelized Pandas-style operations with GPU acceleration
- **Smart Task Optimization**: Automatic workload distribution across CPU cores and GPUs
- **Performance Profiling**: Built-in analysis tools for code optimization
- **High-Speed Data Loading**: Optimized I/O for CSV, JSON, SQL, and Parquet formats
- **GPU-Accelerated Visualizations**: Real-time plotting of massive datasets
- **Customizable Accelerators**: Easy-to-use APIs for custom optimized operations
- **Distributed Processing**: Seamless scaling with Dask and Ray integration
## Installation
```bash
pip install pyturbo
```
For development installation:
```bash
git clone https://github.com/pyturbo/pyturbo.git
cd pyturbo
pip install -e ".[dev]"
```
## Quick Start
```python
import pyturbo as pt
# Create a TurboFrame (high-performance DataFrame)
tf = pt.TurboFrame.from_csv("large_dataset.csv")
# Perform accelerated operations
result = tf.groupby("category").agg({
"value": ["mean", "sum", "count"]
}).compute()
# Use GPU acceleration
with pt.use_gpu():
result = tf.merge(other_tf, on="key")
```
## Requirements
- Python 3.8+
- CUDA-capable GPU (optional, for GPU acceleration)
- CUDA Toolkit 11.x (for GPU features)
## Documentation
Visit our [documentation](https://pyturbo.readthedocs.io/) for:
- Detailed API reference
- Performance optimization guides
- Examples and tutorials
- Best practices
## Contributing
We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.
## License
MIT License - see the [LICENSE](LICENSE) file for details.
## Citation
If you use PyTurbo in your research, please cite:
```bibtex
@software{pyturbo2025,
author = {PyTurbo Team},
title = {PyTurbo: High-Performance Data Analysis Library},
year = {2025},
url = {https://github.com/pyturbo/pyturbo}
}
```
>>>>>>> 373cfb017 (Initial commit)
Raw data
{
"_id": null,
"home_page": "https://github.com/pyturbo/pyturbo",
"name": "pyturbo-analytics",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.14,>=3.9",
"maintainer_email": null,
"keywords": "data analysis, performance optimization, GPU acceleration, parallel processing, pandas, numpy, data science, high performance computing, machine learning",
"author": "ghassenTn",
"author_email": "ghassen.xr@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/07/6c/7b8dba2704dc9adfe31dedf9c3e7a7d2a014da94064fa2dd1e5cccc6d583/pyturbo_analytics-0.1.2.tar.gz",
"platform": null,
"description": "<<<<<<< HEAD\n# pyturbo-analytics\n=======\n# PyTurbo: Unleashing the Speed of Data Analysis \ud83d\ude80\n\nPyTurbo is a high-performance Python library designed to dramatically accelerate data analysis tasks by leveraging multiple computing paradigms including multithreading, multiprocessing, GPU acceleration, and compiled code optimization.\n\n## Features\n\n- **Fast DataFrame Operations**: Parallelized Pandas-style operations with GPU acceleration\n- **Smart Task Optimization**: Automatic workload distribution across CPU cores and GPUs\n- **Performance Profiling**: Built-in analysis tools for code optimization\n- **High-Speed Data Loading**: Optimized I/O for CSV, JSON, SQL, and Parquet formats\n- **GPU-Accelerated Visualizations**: Real-time plotting of massive datasets\n- **Customizable Accelerators**: Easy-to-use APIs for custom optimized operations\n- **Distributed Processing**: Seamless scaling with Dask and Ray integration\n\n## Installation\n\n```bash\npip install pyturbo\n```\n\nFor development installation:\n```bash\ngit clone https://github.com/pyturbo/pyturbo.git\ncd pyturbo\npip install -e \".[dev]\"\n```\n\n## Quick Start\n\n```python\nimport pyturbo as pt\n\n# Create a TurboFrame (high-performance DataFrame)\ntf = pt.TurboFrame.from_csv(\"large_dataset.csv\")\n\n# Perform accelerated operations\nresult = tf.groupby(\"category\").agg({\n \"value\": [\"mean\", \"sum\", \"count\"]\n}).compute()\n\n# Use GPU acceleration\nwith pt.use_gpu():\n result = tf.merge(other_tf, on=\"key\")\n```\n\n## Requirements\n\n- Python 3.8+\n- CUDA-capable GPU (optional, for GPU acceleration)\n- CUDA Toolkit 11.x (for GPU features)\n\n## Documentation\n\nVisit our [documentation](https://pyturbo.readthedocs.io/) for:\n- Detailed API reference\n- Performance optimization guides\n- Examples and tutorials\n- Best practices\n\n## Contributing\n\nWe welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.\n\n## License\n\nMIT License - see the [LICENSE](LICENSE) file for details.\n\n## Citation\n\nIf you use PyTurbo in your research, please cite:\n\n```bibtex\n@software{pyturbo2025,\n author = {PyTurbo Team},\n title = {PyTurbo: High-Performance Data Analysis Library},\n year = {2025},\n url = {https://github.com/pyturbo/pyturbo}\n}\n```\n>>>>>>> 373cfb017 (Initial commit)\n",
"bugtrack_url": null,
"license": null,
"summary": "A high-performance Python library for blazing-fast data analysis",
"version": "0.1.2",
"project_urls": {
"Bug Tracker": "https://github.com/pyturbo/pyturbo/issues",
"Documentation": "https://pyturbo.readthedocs.io/",
"Homepage": "https://github.com/pyturbo/pyturbo",
"Source Code": "https://github.com/pyturbo/pyturbo"
},
"split_keywords": [
"data analysis",
" performance optimization",
" gpu acceleration",
" parallel processing",
" pandas",
" numpy",
" data science",
" high performance computing",
" machine learning"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "274cb9a913f7362429a957ad2c82ef15ec72bc276057417a2755d450ae75ccf0",
"md5": "23f7c241649e21791cf22e51bbf59701",
"sha256": "a0386ca8ee3664e96cecde9bd4878c9b34e6f9e5469ccffbb46c882c2876d036"
},
"downloads": -1,
"filename": "pyturbo_analytics-0.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "23f7c241649e21791cf22e51bbf59701",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.14,>=3.9",
"size": 13483,
"upload_time": "2025-01-13T16:02:12",
"upload_time_iso_8601": "2025-01-13T16:02:12.819467Z",
"url": "https://files.pythonhosted.org/packages/27/4c/b9a913f7362429a957ad2c82ef15ec72bc276057417a2755d450ae75ccf0/pyturbo_analytics-0.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "076c7b8dba2704dc9adfe31dedf9c3e7a7d2a014da94064fa2dd1e5cccc6d583",
"md5": "83316096316710fe64728ea1332ce2ba",
"sha256": "efc6475acab1a4320fb1824d52bfba537ecf10b2dea2862457290a1651f3cb80"
},
"downloads": -1,
"filename": "pyturbo_analytics-0.1.2.tar.gz",
"has_sig": false,
"md5_digest": "83316096316710fe64728ea1332ce2ba",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.14,>=3.9",
"size": 15337,
"upload_time": "2025-01-13T16:02:14",
"upload_time_iso_8601": "2025-01-13T16:02:14.540919Z",
"url": "https://files.pythonhosted.org/packages/07/6c/7b8dba2704dc9adfe31dedf9c3e7a7d2a014da94064fa2dd1e5cccc6d583/pyturbo_analytics-0.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-13 16:02:14",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pyturbo",
"github_project": "pyturbo",
"github_not_found": true,
"lcname": "pyturbo-analytics"
}