pyturbo-analytics


Namepyturbo-analytics JSON
Version 0.1.2 PyPI version JSON
download
home_pagehttps://github.com/pyturbo/pyturbo
SummaryA high-performance Python library for blazing-fast data analysis
upload_time2025-01-13 16:02:14
maintainerNone
docs_urlNone
authorghassenTn
requires_python<3.14,>=3.9
licenseNone
keywords data analysis performance optimization gpu acceleration parallel processing pandas numpy data science high performance computing machine learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <<<<<<< HEAD
# pyturbo-analytics
=======
# PyTurbo: Unleashing the Speed of Data Analysis 🚀

PyTurbo is a high-performance Python library designed to dramatically accelerate data analysis tasks by leveraging multiple computing paradigms including multithreading, multiprocessing, GPU acceleration, and compiled code optimization.

## Features

- **Fast DataFrame Operations**: Parallelized Pandas-style operations with GPU acceleration
- **Smart Task Optimization**: Automatic workload distribution across CPU cores and GPUs
- **Performance Profiling**: Built-in analysis tools for code optimization
- **High-Speed Data Loading**: Optimized I/O for CSV, JSON, SQL, and Parquet formats
- **GPU-Accelerated Visualizations**: Real-time plotting of massive datasets
- **Customizable Accelerators**: Easy-to-use APIs for custom optimized operations
- **Distributed Processing**: Seamless scaling with Dask and Ray integration

## Installation

```bash
pip install pyturbo
```

For development installation:
```bash
git clone https://github.com/pyturbo/pyturbo.git
cd pyturbo
pip install -e ".[dev]"
```

## Quick Start

```python
import pyturbo as pt

# Create a TurboFrame (high-performance DataFrame)
tf = pt.TurboFrame.from_csv("large_dataset.csv")

# Perform accelerated operations
result = tf.groupby("category").agg({
    "value": ["mean", "sum", "count"]
}).compute()

# Use GPU acceleration
with pt.use_gpu():
    result = tf.merge(other_tf, on="key")
```

## Requirements

- Python 3.8+
- CUDA-capable GPU (optional, for GPU acceleration)
- CUDA Toolkit 11.x (for GPU features)

## Documentation

Visit our [documentation](https://pyturbo.readthedocs.io/) for:
- Detailed API reference
- Performance optimization guides
- Examples and tutorials
- Best practices

## Contributing

We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.

## License

MIT License - see the [LICENSE](LICENSE) file for details.

## Citation

If you use PyTurbo in your research, please cite:

```bibtex
@software{pyturbo2025,
  author = {PyTurbo Team},
  title = {PyTurbo: High-Performance Data Analysis Library},
  year = {2025},
  url = {https://github.com/pyturbo/pyturbo}
}
```
>>>>>>> 373cfb017 (Initial commit)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pyturbo/pyturbo",
    "name": "pyturbo-analytics",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.14,>=3.9",
    "maintainer_email": null,
    "keywords": "data analysis, performance optimization, GPU acceleration, parallel processing, pandas, numpy, data science, high performance computing, machine learning",
    "author": "ghassenTn",
    "author_email": "ghassen.xr@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/07/6c/7b8dba2704dc9adfe31dedf9c3e7a7d2a014da94064fa2dd1e5cccc6d583/pyturbo_analytics-0.1.2.tar.gz",
    "platform": null,
    "description": "<<<<<<< HEAD\n# pyturbo-analytics\n=======\n# PyTurbo: Unleashing the Speed of Data Analysis \ud83d\ude80\n\nPyTurbo is a high-performance Python library designed to dramatically accelerate data analysis tasks by leveraging multiple computing paradigms including multithreading, multiprocessing, GPU acceleration, and compiled code optimization.\n\n## Features\n\n- **Fast DataFrame Operations**: Parallelized Pandas-style operations with GPU acceleration\n- **Smart Task Optimization**: Automatic workload distribution across CPU cores and GPUs\n- **Performance Profiling**: Built-in analysis tools for code optimization\n- **High-Speed Data Loading**: Optimized I/O for CSV, JSON, SQL, and Parquet formats\n- **GPU-Accelerated Visualizations**: Real-time plotting of massive datasets\n- **Customizable Accelerators**: Easy-to-use APIs for custom optimized operations\n- **Distributed Processing**: Seamless scaling with Dask and Ray integration\n\n## Installation\n\n```bash\npip install pyturbo\n```\n\nFor development installation:\n```bash\ngit clone https://github.com/pyturbo/pyturbo.git\ncd pyturbo\npip install -e \".[dev]\"\n```\n\n## Quick Start\n\n```python\nimport pyturbo as pt\n\n# Create a TurboFrame (high-performance DataFrame)\ntf = pt.TurboFrame.from_csv(\"large_dataset.csv\")\n\n# Perform accelerated operations\nresult = tf.groupby(\"category\").agg({\n    \"value\": [\"mean\", \"sum\", \"count\"]\n}).compute()\n\n# Use GPU acceleration\nwith pt.use_gpu():\n    result = tf.merge(other_tf, on=\"key\")\n```\n\n## Requirements\n\n- Python 3.8+\n- CUDA-capable GPU (optional, for GPU acceleration)\n- CUDA Toolkit 11.x (for GPU features)\n\n## Documentation\n\nVisit our [documentation](https://pyturbo.readthedocs.io/) for:\n- Detailed API reference\n- Performance optimization guides\n- Examples and tutorials\n- Best practices\n\n## Contributing\n\nWe welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.\n\n## License\n\nMIT License - see the [LICENSE](LICENSE) file for details.\n\n## Citation\n\nIf you use PyTurbo in your research, please cite:\n\n```bibtex\n@software{pyturbo2025,\n  author = {PyTurbo Team},\n  title = {PyTurbo: High-Performance Data Analysis Library},\n  year = {2025},\n  url = {https://github.com/pyturbo/pyturbo}\n}\n```\n>>>>>>> 373cfb017 (Initial commit)\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A high-performance Python library for blazing-fast data analysis",
    "version": "0.1.2",
    "project_urls": {
        "Bug Tracker": "https://github.com/pyturbo/pyturbo/issues",
        "Documentation": "https://pyturbo.readthedocs.io/",
        "Homepage": "https://github.com/pyturbo/pyturbo",
        "Source Code": "https://github.com/pyturbo/pyturbo"
    },
    "split_keywords": [
        "data analysis",
        " performance optimization",
        " gpu acceleration",
        " parallel processing",
        " pandas",
        " numpy",
        " data science",
        " high performance computing",
        " machine learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "274cb9a913f7362429a957ad2c82ef15ec72bc276057417a2755d450ae75ccf0",
                "md5": "23f7c241649e21791cf22e51bbf59701",
                "sha256": "a0386ca8ee3664e96cecde9bd4878c9b34e6f9e5469ccffbb46c882c2876d036"
            },
            "downloads": -1,
            "filename": "pyturbo_analytics-0.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "23f7c241649e21791cf22e51bbf59701",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.14,>=3.9",
            "size": 13483,
            "upload_time": "2025-01-13T16:02:12",
            "upload_time_iso_8601": "2025-01-13T16:02:12.819467Z",
            "url": "https://files.pythonhosted.org/packages/27/4c/b9a913f7362429a957ad2c82ef15ec72bc276057417a2755d450ae75ccf0/pyturbo_analytics-0.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "076c7b8dba2704dc9adfe31dedf9c3e7a7d2a014da94064fa2dd1e5cccc6d583",
                "md5": "83316096316710fe64728ea1332ce2ba",
                "sha256": "efc6475acab1a4320fb1824d52bfba537ecf10b2dea2862457290a1651f3cb80"
            },
            "downloads": -1,
            "filename": "pyturbo_analytics-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "83316096316710fe64728ea1332ce2ba",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.14,>=3.9",
            "size": 15337,
            "upload_time": "2025-01-13T16:02:14",
            "upload_time_iso_8601": "2025-01-13T16:02:14.540919Z",
            "url": "https://files.pythonhosted.org/packages/07/6c/7b8dba2704dc9adfe31dedf9c3e7a7d2a014da94064fa2dd1e5cccc6d583/pyturbo_analytics-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-13 16:02:14",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pyturbo",
    "github_project": "pyturbo",
    "github_not_found": true,
    "lcname": "pyturbo-analytics"
}
        
Elapsed time: 0.50086s