# PyTwinNet
Wireless **Digital Twin** & **Network Optimization** library for research and prototyping.
## Install
```bash
pip install pytwinnet # core
pip install pytwinnet[accel,cli] # with Numba + CLI
pip install pytwinnet[all] # everything (dev/docs too)
## Quickstart
import pytwinnet as ptn
from pytwinnet.physics import Environment, FreeSpacePathLoss
twin = ptn.DigitalTwin()
twin.set_environment(Environment(dimensions_m=(300,300,30)))
twin.set_propagation_model(FreeSpacePathLoss())
### `LICENSE`
Use MIT (or your preferred). MIT example is fine.
## Step 3: Ensure `__version__` is exposed
In `pytwinnet/__init__.py`:
```python
__version__ = "0.1.0"
from .core.digital_twin import DigitalTwin
from .core.network import Network
from .core.node import WirelessNode, TransceiverProperties
Raw data
{
"_id": null,
"home_page": null,
"name": "pytwinnet",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "wireless, digital twin, network optimization, simulation, RIS, 5G, Wi-Fi",
"author": null,
"author_email": "Oluwaseyi Giwa <giwaoluwaseyi130@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/51/49/028968053bdfed29e5d03c7e4fa2de2d1ab91c8f5d5a8f3aeb7ef83488a9/pytwinnet-0.1.2.tar.gz",
"platform": null,
"description": "# PyTwinNet\r\n\r\nWireless **Digital Twin** & **Network Optimization** library for research and prototyping.\r\n\r\n## Install\r\n\r\n```bash\r\npip install pytwinnet # core\r\npip install pytwinnet[accel,cli] # with Numba + CLI\r\npip install pytwinnet[all] # everything (dev/docs too)\r\n\r\n\r\n## Quickstart\r\n\r\nimport pytwinnet as ptn\r\nfrom pytwinnet.physics import Environment, FreeSpacePathLoss\r\n\r\ntwin = ptn.DigitalTwin()\r\ntwin.set_environment(Environment(dimensions_m=(300,300,30)))\r\ntwin.set_propagation_model(FreeSpacePathLoss())\r\n\r\n\r\n\r\n### `LICENSE`\r\nUse MIT (or your preferred). MIT example is fine.\r\n\r\n## Step 3: Ensure `__version__` is exposed\r\n\r\nIn `pytwinnet/__init__.py`:\r\n\r\n```python\r\n__version__ = \"0.1.0\"\r\n\r\nfrom .core.digital_twin import DigitalTwin\r\nfrom .core.network import Network\r\nfrom .core.node import WirelessNode, TransceiverProperties\r\n\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "PyTwinNet: Wireless Digital Twin & Network Optimization Library",
"version": "0.1.2",
"project_urls": null,
"split_keywords": [
"wireless",
" digital twin",
" network optimization",
" simulation",
" ris",
" 5g",
" wi-fi"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "608b13e09ae3ad6b5454ce56a6ee852ffda3311fb45b7b7870609e2085583c1a",
"md5": "4896a9b19ed656c64cbba5a9cd1d916f",
"sha256": "d8e822f78ea765f81b644c92acfa864ffdfc35ea988d800aee13026c59e41e34"
},
"downloads": -1,
"filename": "pytwinnet-0.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "4896a9b19ed656c64cbba5a9cd1d916f",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 44370,
"upload_time": "2025-09-02T20:40:30",
"upload_time_iso_8601": "2025-09-02T20:40:30.166351Z",
"url": "https://files.pythonhosted.org/packages/60/8b/13e09ae3ad6b5454ce56a6ee852ffda3311fb45b7b7870609e2085583c1a/pytwinnet-0.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5149028968053bdfed29e5d03c7e4fa2de2d1ab91c8f5d5a8f3aeb7ef83488a9",
"md5": "88c9d8e8416f38c930c9ad4f5942bfac",
"sha256": "9727b680b688a10a643b0c59b0a3c13303f8270988e2daa552e8670a75f0f632"
},
"downloads": -1,
"filename": "pytwinnet-0.1.2.tar.gz",
"has_sig": false,
"md5_digest": "88c9d8e8416f38c930c9ad4f5942bfac",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 35916,
"upload_time": "2025-09-02T20:40:33",
"upload_time_iso_8601": "2025-09-02T20:40:33.329118Z",
"url": "https://files.pythonhosted.org/packages/51/49/028968053bdfed29e5d03c7e4fa2de2d1ab91c8f5d5a8f3aeb7ef83488a9/pytwinnet-0.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-09-02 20:40:33",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "pytwinnet"
}