# PyTwinNet
Wireless **Digital Twin** & **Network Optimization** library for research and prototyping.
## Install
```bash
pip install pytwinnet # core
pip install pytwinnet[accel,cli] # with Numba + CLI
pip install pytwinnet[all] # everything (dev/docs too)
```
## Quickstart
```python
import pytwinnet as ptn
from pytwinnet.physics import Environment, FreeSpacePathLoss
twin = ptn.DigitalTwin()
twin.set_environment(Environment(dimensions_m=(300,300,30)))
twin.set_propagation_model(FreeSpacePathLoss())
```
### `LICENSE`
Use MIT (or your preferred). MIT example is fine.
## Creating your first Wireless Digital Twin
```python
from .core.digital_twin import DigitalTwin
from .core.network import Network
from .core.node import WirelessNode, TransceiverProperties
```
Raw data
{
"_id": null,
"home_page": null,
"name": "pytwinnet",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "wireless, digital twin, network optimization, simulation, RIS, 5G, Wi-Fi",
"author": null,
"author_email": "Oluwaseyi Giwa <giwaoluwaseyi130@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/69/09/dc96c58473bc30dcc26fe07576b6dfa5ab3a44f4c81dc2c0bd84cfc5cc9a/pytwinnet-0.1.3.tar.gz",
"platform": null,
"description": "# PyTwinNet\r\n\r\nWireless **Digital Twin** & **Network Optimization** library for research and prototyping.\r\n\r\n## Install\r\n\r\n```bash\r\npip install pytwinnet # core\r\npip install pytwinnet[accel,cli] # with Numba + CLI\r\npip install pytwinnet[all] # everything (dev/docs too)\r\n```\r\n\r\n## Quickstart\r\n```python\r\nimport pytwinnet as ptn\r\nfrom pytwinnet.physics import Environment, FreeSpacePathLoss\r\n\r\ntwin = ptn.DigitalTwin()\r\ntwin.set_environment(Environment(dimensions_m=(300,300,30)))\r\ntwin.set_propagation_model(FreeSpacePathLoss())\r\n```\r\n\r\n\r\n### `LICENSE`\r\nUse MIT (or your preferred). MIT example is fine.\r\n\r\n## Creating your first Wireless Digital Twin\r\n```python\r\nfrom .core.digital_twin import DigitalTwin\r\nfrom .core.network import Network\r\nfrom .core.node import WirelessNode, TransceiverProperties\r\n```\r\n\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "PyTwinNet: Wireless Digital Twin & Network Optimization Library",
"version": "0.1.3",
"project_urls": null,
"split_keywords": [
"wireless",
" digital twin",
" network optimization",
" simulation",
" ris",
" 5g",
" wi-fi"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "42721e4d2c2b39a5b3b7408ba256f490ab578a36f7d8955d1fccbf9b2edb72a8",
"md5": "593d22b82fc0be2c60cf0270a0e6fade",
"sha256": "635a49fdea5a2688e717cc3918f2004eb7bc17ecd1532fec1386231f80e535d2"
},
"downloads": -1,
"filename": "pytwinnet-0.1.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "593d22b82fc0be2c60cf0270a0e6fade",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 52392,
"upload_time": "2025-10-08T21:54:55",
"upload_time_iso_8601": "2025-10-08T21:54:55.776949Z",
"url": "https://files.pythonhosted.org/packages/42/72/1e4d2c2b39a5b3b7408ba256f490ab578a36f7d8955d1fccbf9b2edb72a8/pytwinnet-0.1.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6909dc96c58473bc30dcc26fe07576b6dfa5ab3a44f4c81dc2c0bd84cfc5cc9a",
"md5": "6afbe510edfc9c9d81acf9760dff76a7",
"sha256": "8da512852630a0199694d795509c4dce3cfe1777bbe9d0f00e2b1871c38b1b3d"
},
"downloads": -1,
"filename": "pytwinnet-0.1.3.tar.gz",
"has_sig": false,
"md5_digest": "6afbe510edfc9c9d81acf9760dff76a7",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 71648,
"upload_time": "2025-10-08T21:54:57",
"upload_time_iso_8601": "2025-10-08T21:54:57.505890Z",
"url": "https://files.pythonhosted.org/packages/69/09/dc96c58473bc30dcc26fe07576b6dfa5ab3a44f4c81dc2c0bd84cfc5cc9a/pytwinnet-0.1.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-08 21:54:57",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "pytwinnet"
}