pytwinnet


Namepytwinnet JSON
Version 0.1.3 PyPI version JSON
download
home_pageNone
SummaryPyTwinNet: Wireless Digital Twin & Network Optimization Library
upload_time2025-10-08 21:54:57
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseMIT
keywords wireless digital twin network optimization simulation ris 5g wi-fi
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # PyTwinNet

Wireless **Digital Twin** & **Network Optimization** library for research and prototyping.

## Install

```bash
pip install pytwinnet                 # core
pip install pytwinnet[accel,cli]      # with Numba + CLI
pip install pytwinnet[all]            # everything (dev/docs too)
```

## Quickstart
```python
import pytwinnet as ptn
from pytwinnet.physics import Environment, FreeSpacePathLoss

twin = ptn.DigitalTwin()
twin.set_environment(Environment(dimensions_m=(300,300,30)))
twin.set_propagation_model(FreeSpacePathLoss())
```


### `LICENSE`
Use MIT (or your preferred). MIT example is fine.

## Creating your first Wireless Digital Twin
```python
from .core.digital_twin import DigitalTwin
from .core.network import Network
from .core.node import WirelessNode, TransceiverProperties
```


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "pytwinnet",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "wireless, digital twin, network optimization, simulation, RIS, 5G, Wi-Fi",
    "author": null,
    "author_email": "Oluwaseyi Giwa <giwaoluwaseyi130@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/69/09/dc96c58473bc30dcc26fe07576b6dfa5ab3a44f4c81dc2c0bd84cfc5cc9a/pytwinnet-0.1.3.tar.gz",
    "platform": null,
    "description": "# PyTwinNet\r\n\r\nWireless **Digital Twin** & **Network Optimization** library for research and prototyping.\r\n\r\n## Install\r\n\r\n```bash\r\npip install pytwinnet                 # core\r\npip install pytwinnet[accel,cli]      # with Numba + CLI\r\npip install pytwinnet[all]            # everything (dev/docs too)\r\n```\r\n\r\n## Quickstart\r\n```python\r\nimport pytwinnet as ptn\r\nfrom pytwinnet.physics import Environment, FreeSpacePathLoss\r\n\r\ntwin = ptn.DigitalTwin()\r\ntwin.set_environment(Environment(dimensions_m=(300,300,30)))\r\ntwin.set_propagation_model(FreeSpacePathLoss())\r\n```\r\n\r\n\r\n### `LICENSE`\r\nUse MIT (or your preferred). MIT example is fine.\r\n\r\n## Creating your first Wireless Digital Twin\r\n```python\r\nfrom .core.digital_twin import DigitalTwin\r\nfrom .core.network import Network\r\nfrom .core.node import WirelessNode, TransceiverProperties\r\n```\r\n\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "PyTwinNet: Wireless Digital Twin & Network Optimization Library",
    "version": "0.1.3",
    "project_urls": null,
    "split_keywords": [
        "wireless",
        " digital twin",
        " network optimization",
        " simulation",
        " ris",
        " 5g",
        " wi-fi"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "42721e4d2c2b39a5b3b7408ba256f490ab578a36f7d8955d1fccbf9b2edb72a8",
                "md5": "593d22b82fc0be2c60cf0270a0e6fade",
                "sha256": "635a49fdea5a2688e717cc3918f2004eb7bc17ecd1532fec1386231f80e535d2"
            },
            "downloads": -1,
            "filename": "pytwinnet-0.1.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "593d22b82fc0be2c60cf0270a0e6fade",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 52392,
            "upload_time": "2025-10-08T21:54:55",
            "upload_time_iso_8601": "2025-10-08T21:54:55.776949Z",
            "url": "https://files.pythonhosted.org/packages/42/72/1e4d2c2b39a5b3b7408ba256f490ab578a36f7d8955d1fccbf9b2edb72a8/pytwinnet-0.1.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "6909dc96c58473bc30dcc26fe07576b6dfa5ab3a44f4c81dc2c0bd84cfc5cc9a",
                "md5": "6afbe510edfc9c9d81acf9760dff76a7",
                "sha256": "8da512852630a0199694d795509c4dce3cfe1777bbe9d0f00e2b1871c38b1b3d"
            },
            "downloads": -1,
            "filename": "pytwinnet-0.1.3.tar.gz",
            "has_sig": false,
            "md5_digest": "6afbe510edfc9c9d81acf9760dff76a7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 71648,
            "upload_time": "2025-10-08T21:54:57",
            "upload_time_iso_8601": "2025-10-08T21:54:57.505890Z",
            "url": "https://files.pythonhosted.org/packages/69/09/dc96c58473bc30dcc26fe07576b6dfa5ab3a44f4c81dc2c0bd84cfc5cc9a/pytwinnet-0.1.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-08 21:54:57",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "pytwinnet"
}
        
Elapsed time: 1.97583s