Name | pyvest JSON |
Version |
0.0.6
JSON |
| download |
home_page | None |
Summary | PyVest is a Python library that provides tools for investment analysis. |
upload_time | 2024-11-03 18:30:27 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.7 |
license | MIT |
keywords |
finance
investment
portfolio theory
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# PyVest
PyVest is a Python library that provides tools for investment
analysis.
## Risk-return trade-off graph
PyVest can be used to easily create graphs of risk-return trade-off.
Given a set of risky and/or non-risky assets, the following objects
can be represented on a two-dimensional graph of the expected return
vs the standard deviation:
- Feasible portfolios
- Minimum variance portfolio (MVP)
- Efficient frontier
- Tangency portfolio
- Capital allocation line (CAL)
- Optimal portfolio of an investor
- Indifference curves of an investor
### Example 1: No risk-free asset
Import the class InvestmentUniverse:
from pyvest import InvestmentUniverse
Define the names of the assets:
assets = ['KO', 'MSFT']
Define the expected returns corresponding to each asset:
mu = [8, 14]
Define the variance-covariance matrix of the assets:
cov = [[3**2, 0],
[0, 6**2]]
Construct the InvestmentUniverse corresponding to those assets:
investment_universe = InvestmentUniverse(assets, mu, cov)
Calculate the feasible portfolios:
investment_universe.calculate_feasible_portfolios()
Calculate the MVP:
investment_universe.calculate_mvp()
Calculate the efficient frontier:
investment_universe.calculate_efficient_frontier()
Plot the risk-return trade-off graph of the investment universe:
investment_universe.plot()
### Example 2: With a risk-free asset
The risky assets are defined as above:
from pyvest import InvestmentUniverse
assets = ['KO', 'MSFT']
mu = [8, 14]
cov = [[3**2, 0],
[0, 6**2]]
A risk-free asset of 2% is added to the investment universe:
investment_universe_with_r_f = InvestmentUniverse(assets, mu, cov, r_f=2)
The feasible portfolios, the MVP and the efficient frontier are
calculated as above:
investment_universe_with_r_f.calculate_feasible_portfolios()
investment_universe_with_r_f.calculate_mvp()
investment_universe_with_r_f.calculate_efficient_frontier()
Calculate the tangency portfolio:
investment_universe_with_r_f.calculate_tangency_portfolio()
Calculate the CAL:
investment_universe_with_r_f.calculate_cal()
Plot the risk-return trade-off graph of the investment universe with a
risk-free asset:
investment_universe_with_r_f.plot()
Raw data
{
"_id": null,
"home_page": null,
"name": "pyvest",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "Patrick Munroe <patrick.munroe@gmail.com>",
"keywords": "finance, investment, portfolio theory",
"author": null,
"author_email": "Patrick Munroe <patrick.munroe@gmail.com>, S\u00e9bastien Plante <mrplante@hotmail.com>",
"download_url": "https://files.pythonhosted.org/packages/65/66/0bf2b0c635b55f3d82fec1878c343f101f13167abd9894b9290b0c9cea54/pyvest-0.0.6.tar.gz",
"platform": null,
"description": "# PyVest\r\n\r\nPyVest is a Python library that provides tools for investment \r\nanalysis.\r\n\r\n## Risk-return trade-off graph\r\n\r\nPyVest can be used to easily create graphs of risk-return trade-off. \r\nGiven a set of risky and/or non-risky assets, the following objects \r\ncan be represented on a two-dimensional graph of the expected return \r\nvs the standard deviation:\r\n\r\n- Feasible portfolios\r\n- Minimum variance portfolio (MVP)\r\n- Efficient frontier\r\n- Tangency portfolio\r\n- Capital allocation line (CAL)\r\n- Optimal portfolio of an investor\r\n- Indifference curves of an investor\r\n\r\n\r\n### Example 1: No risk-free asset\r\n\r\nImport the class InvestmentUniverse:\r\n\r\n from pyvest import InvestmentUniverse\r\n\r\nDefine the names of the assets:\r\n\r\n assets = ['KO', 'MSFT']\r\n\r\nDefine the expected returns corresponding to each asset:\r\n\r\n mu = [8, 14]\r\n\r\nDefine the variance-covariance matrix of the assets:\r\n\r\n cov = [[3**2, 0],\r\n [0, 6**2]]\r\n\r\nConstruct the InvestmentUniverse corresponding to those assets:\r\n\r\n investment_universe = InvestmentUniverse(assets, mu, cov)\r\n\r\nCalculate the feasible portfolios:\r\n\r\n investment_universe.calculate_feasible_portfolios()\r\n\r\nCalculate the MVP:\r\n\r\n investment_universe.calculate_mvp()\r\n\r\nCalculate the efficient frontier:\r\n\r\n investment_universe.calculate_efficient_frontier()\r\n\r\nPlot the risk-return trade-off graph of the investment universe:\r\n\r\n investment_universe.plot()\r\n\r\n### Example 2: With a risk-free asset\r\n\r\nThe risky assets are defined as above:\r\n\r\n from pyvest import InvestmentUniverse\r\n\r\n assets = ['KO', 'MSFT']\r\n mu = [8, 14]\r\n cov = [[3**2, 0],\r\n [0, 6**2]]\r\n\r\nA risk-free asset of 2% is added to the investment universe:\r\n\r\n investment_universe_with_r_f = InvestmentUniverse(assets, mu, cov, r_f=2)\r\n\r\nThe feasible portfolios, the MVP and the efficient frontier are \r\ncalculated as above:\r\n\r\n investment_universe_with_r_f.calculate_feasible_portfolios()\r\n investment_universe_with_r_f.calculate_mvp()\r\n investment_universe_with_r_f.calculate_efficient_frontier()\r\n\r\nCalculate the tangency portfolio:\r\n\r\n investment_universe_with_r_f.calculate_tangency_portfolio()\r\n\r\nCalculate the CAL:\r\n\r\n investment_universe_with_r_f.calculate_cal()\r\n\r\nPlot the risk-return trade-off graph of the investment universe with a \r\nrisk-free asset:\r\n\r\n investment_universe_with_r_f.plot()\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "PyVest is a Python library that provides tools for investment analysis.",
"version": "0.0.6",
"project_urls": {
"Homepage": "https://github.com/pamun/pyvest"
},
"split_keywords": [
"finance",
" investment",
" portfolio theory"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "6032826ceace37bd3aea63e1670b1ab4068190b2c7d821f67f8eca705909b21c",
"md5": "b73d2f28af5a73ede7f958001d123cb8",
"sha256": "61707bfea5a710ed3403d37c5663d959ffbe73d2e81c08ed65d3bf47fe0efbf7"
},
"downloads": -1,
"filename": "pyvest-0.0.6-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b73d2f28af5a73ede7f958001d123cb8",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 50104,
"upload_time": "2024-11-03T18:30:26",
"upload_time_iso_8601": "2024-11-03T18:30:26.961684Z",
"url": "https://files.pythonhosted.org/packages/60/32/826ceace37bd3aea63e1670b1ab4068190b2c7d821f67f8eca705909b21c/pyvest-0.0.6-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "65660bf2b0c635b55f3d82fec1878c343f101f13167abd9894b9290b0c9cea54",
"md5": "1e8b26f96494b5539da660a4172162e1",
"sha256": "cbd03a54c9b932d0a1ef810ce9b69f132188858f0fb86ffaf070a38633df91ee"
},
"downloads": -1,
"filename": "pyvest-0.0.6.tar.gz",
"has_sig": false,
"md5_digest": "1e8b26f96494b5539da660a4172162e1",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 42210,
"upload_time": "2024-11-03T18:30:27",
"upload_time_iso_8601": "2024-11-03T18:30:27.907768Z",
"url": "https://files.pythonhosted.org/packages/65/66/0bf2b0c635b55f3d82fec1878c343f101f13167abd9894b9290b0c9cea54/pyvest-0.0.6.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-03 18:30:27",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pamun",
"github_project": "pyvest",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "pyvest"
}