| Name | pyvtorch JSON |
| Version |
1.3.1
JSON |
| download |
| home_page | None |
| Summary | Python tools to work in deep learning with PyTorch |
| upload_time | 2025-09-12 17:26:00 |
| maintainer | None |
| docs_url | None |
| author | None |
| requires_python | >=3.12.0 |
| license | MIT License |
| keywords |
deep learning
pytorch
|
| VCS |
 |
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
# PyVTorch
General custom tools to work in deep learning research using Python and PyTorch
## Getting Started
### Installation
This package can easily be installed using `pip`:
```bash
pip install pyvtorch
```
An alternative installation that partially uses Anaconda would involve...
1. First, install some Anaconda distribution, in case you do not have any:
https://docs.anaconda.com/anaconda/install/
2. Then, create an Anaconda environment with Python
```bash
conda create -n dev python
```
3. Activate the environment
```bash
conda activate dev
```
3. Then, install all required packages by running the `install.sh` script:
```bash
yes | . install.sh
```
4. You can make sure that your PyTorch installation has CUDA GPU support by running...
```bash
python -c "import torch; print(torch.cuda.is_available()) \
print([torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())])"
```
The first line should print `True` if CUDA is supported. And the second line should show you the name/s of your available GPU/s.
5. That's it! You're good to go :)
That second installation procedure is designed to be overly redundant, so please feel free to follow your own installation procedure.
### Requirements
Provided installation steps are only guaranteed to work in Ubuntu 24.04 with NVidia drivers 535.
## Additional information
### Main Author Contact
Valeria Pais - @vrpais - valeriarpais@gmail.com
Raw data
{
"_id": null,
"home_page": null,
"name": "pyvtorch",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.12.0",
"maintainer_email": null,
"keywords": "deep learning, pytorch",
"author": null,
"author_email": "Valeria Pais <valeriarpais@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/23/fb/3ca49b856523a127651718a64ece4dfa93234d5e8fb47b48ea8c98042612/pyvtorch-1.3.1.tar.gz",
"platform": null,
"description": "# PyVTorch\n\nGeneral custom tools to work in deep learning research using Python and PyTorch\n\n## Getting Started\n\n### Installation\n\nThis package can easily be installed using `pip`:\n\n```bash\npip install pyvtorch\n```\n\nAn alternative installation that partially uses Anaconda would involve...\n\n1. First, install some Anaconda distribution, in case you do not have any:\n https://docs.anaconda.com/anaconda/install/\n2. Then, create an Anaconda environment with Python\n ```bash\n conda create -n dev python\n ```\n3. Activate the environment\n ```bash\n conda activate dev\n ```\n3. Then, install all required packages by running the `install.sh` script:\n ```bash\n yes | . install.sh\n ```\n4. You can make sure that your PyTorch installation has CUDA GPU support by running...\n ```bash\n python -c \"import torch; print(torch.cuda.is_available()) \\\n print([torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())])\" \n ```\n The first line should print `True` if CUDA is supported. And the second line should show you the name/s of your available GPU/s.\n5. That's it! You're good to go :)\n\nThat second installation procedure is designed to be overly redundant, so please feel free to follow your own installation procedure.\n\n### Requirements\n\nProvided installation steps are only guaranteed to work in Ubuntu 24.04 with NVidia drivers 535.\n\n## Additional information\n\n### Main Author Contact\n\nValeria Pais - @vrpais - valeriarpais@gmail.com\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "Python tools to work in deep learning with PyTorch",
"version": "1.3.1",
"project_urls": {
"Homepage": "https://github.com/0xInfty/PyVTorch",
"Issues": "https://github.com/0xInfty/PyVTorch/issues",
"Repository": "https://github.com/0xInfty/PyVTorch.git"
},
"split_keywords": [
"deep learning",
" pytorch"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "f804d8e9daa52389afab932565ce3bfcc4255c70d1252b81799eb87d710b40d2",
"md5": "f05d65d33cb39e8ba8d5d16e2c10058b",
"sha256": "0990ea74c9c42ef316ffe33589add63475b130e67864e365abf1a16e92c86d03"
},
"downloads": -1,
"filename": "pyvtorch-1.3.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "f05d65d33cb39e8ba8d5d16e2c10058b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.12.0",
"size": 21223,
"upload_time": "2025-09-12T17:25:59",
"upload_time_iso_8601": "2025-09-12T17:25:59.288138Z",
"url": "https://files.pythonhosted.org/packages/f8/04/d8e9daa52389afab932565ce3bfcc4255c70d1252b81799eb87d710b40d2/pyvtorch-1.3.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "23fb3ca49b856523a127651718a64ece4dfa93234d5e8fb47b48ea8c98042612",
"md5": "bbf2843dd3479bbcb01e20360a85d738",
"sha256": "758776fe37cd28e04afc00785eeea3110f9a67bbb55704a2db3a42266c4b1fbc"
},
"downloads": -1,
"filename": "pyvtorch-1.3.1.tar.gz",
"has_sig": false,
"md5_digest": "bbf2843dd3479bbcb01e20360a85d738",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.12.0",
"size": 20983,
"upload_time": "2025-09-12T17:26:00",
"upload_time_iso_8601": "2025-09-12T17:26:00.314801Z",
"url": "https://files.pythonhosted.org/packages/23/fb/3ca49b856523a127651718a64ece4dfa93234d5e8fb47b48ea8c98042612/pyvtorch-1.3.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-09-12 17:26:00",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "0xInfty",
"github_project": "PyVTorch",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "pyvtorch"
}