pyvtorch


Namepyvtorch JSON
Version 1.2.1 PyPI version JSON
download
home_pageNone
SummaryPython tools to work in deep learning with PyTorch
upload_time2024-10-07 17:34:55
maintainerNone
docs_urlNone
authorNone
requires_python>=3.11.0
licenseMIT License
keywords deep learning pytorch
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # PyVTorch

General custom tools to work in deep learning research using Python and PyTorch

## Getting Started

### Installation

This package can easily be installed using `pip`:

```bash
pip install pyvtorch
```

An alternative installation that partially uses Anaconda would involve...

1. First, install some Anaconda distribution, in case you do not have any:
   https://docs.anaconda.com/anaconda/install/
2. Then, create an Anaconda environment with Python 3.11.0
   ```bash
   conda create -n dev python=3.11.0
   ```
3. Activate the environment
   ```bash
   conda activate dev
   ```
3. Then, install all required packages by running the `install.sh` script:
   ```bash
   yes | . install.sh
   ```
   This will have executed...
   ```bash
   conda install python=3.11.0 \
       pytorch::pytorch pytorch::torchvision pytorch::pytorch-cuda \
       numpy scikit-image scikit-learn conda-forge::matplotlib h5py tqdm \
       -c nvidia
    pip install pyvtools pyvtorch
    ```
4. You can make sure that your PyTorch installation has CUDA GPU support by running...
   ```bash
   python -c "import torch; print(torch.cuda.is_available()) \
              print([torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())])"  
   ```
   The first line should print `True` if CUDA is supported. And the second line should show you the name/s of your available GPU/s.
5. That's it! You're good to go :)

That second installation procedure is designed to be overly redundant, so please feel free to follow your own installation procedure.

### Requirements

Provided installation steps are only guaranteed to work in Ubuntu 24.04 with NVidia drivers 535.

In case you are following another installation procedure, this repository requires...

- Python 3.11.0
- PyVTools >= 1.2.0
- h5py, any version

## Additional information

### Main Author Contact

Valeria Pais - @vrpais - valeriarpais@gmail.com

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "pyvtorch",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.11.0",
    "maintainer_email": null,
    "keywords": "deep learning, pytorch",
    "author": null,
    "author_email": "Valeria Pais <valeriarpais@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/84/a7/bf194103e31e0b4212ad0ead0f10a9d6b8c6750f40db0cd8437069faae90/pyvtorch-1.2.1.tar.gz",
    "platform": null,
    "description": "# PyVTorch\n\nGeneral custom tools to work in deep learning research using Python and PyTorch\n\n## Getting Started\n\n### Installation\n\nThis package can easily be installed using `pip`:\n\n```bash\npip install pyvtorch\n```\n\nAn alternative installation that partially uses Anaconda would involve...\n\n1. First, install some Anaconda distribution, in case you do not have any:\n   https://docs.anaconda.com/anaconda/install/\n2. Then, create an Anaconda environment with Python 3.11.0\n   ```bash\n   conda create -n dev python=3.11.0\n   ```\n3. Activate the environment\n   ```bash\n   conda activate dev\n   ```\n3. Then, install all required packages by running the `install.sh` script:\n   ```bash\n   yes | . install.sh\n   ```\n   This will have executed...\n   ```bash\n   conda install python=3.11.0 \\\n       pytorch::pytorch pytorch::torchvision pytorch::pytorch-cuda \\\n       numpy scikit-image scikit-learn conda-forge::matplotlib h5py tqdm \\\n       -c nvidia\n    pip install pyvtools pyvtorch\n    ```\n4. You can make sure that your PyTorch installation has CUDA GPU support by running...\n   ```bash\n   python -c \"import torch; print(torch.cuda.is_available()) \\\n              print([torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())])\"  \n   ```\n   The first line should print `True` if CUDA is supported. And the second line should show you the name/s of your available GPU/s.\n5. That's it! You're good to go :)\n\nThat second installation procedure is designed to be overly redundant, so please feel free to follow your own installation procedure.\n\n### Requirements\n\nProvided installation steps are only guaranteed to work in Ubuntu 24.04 with NVidia drivers 535.\n\nIn case you are following another installation procedure, this repository requires...\n\n- Python 3.11.0\n- PyVTools >= 1.2.0\n- h5py, any version\n\n## Additional information\n\n### Main Author Contact\n\nValeria Pais - @vrpais - valeriarpais@gmail.com\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "Python tools to work in deep learning with PyTorch",
    "version": "1.2.1",
    "project_urls": {
        "Homepage": "https://github.com/0xInfty/PyVTorch",
        "Issues": "https://github.com/0xInfty/PyVTorch/issues",
        "Repository": "https://github.com/0xInfty/PyVTorch.git"
    },
    "split_keywords": [
        "deep learning",
        " pytorch"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3f2c89f6718e8d32d7f26fcc757a1d44165f6bbd40e60ac6fd85280f6583fd77",
                "md5": "2deb71b73489ebfd401f7b29c16f910b",
                "sha256": "7959e1a0a216ad4c096a05be001f0309777d2c8ec80f2317a6bbe7a70493b014"
            },
            "downloads": -1,
            "filename": "pyvtorch-1.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2deb71b73489ebfd401f7b29c16f910b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11.0",
            "size": 20230,
            "upload_time": "2024-10-07T17:34:53",
            "upload_time_iso_8601": "2024-10-07T17:34:53.377988Z",
            "url": "https://files.pythonhosted.org/packages/3f/2c/89f6718e8d32d7f26fcc757a1d44165f6bbd40e60ac6fd85280f6583fd77/pyvtorch-1.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "84a7bf194103e31e0b4212ad0ead0f10a9d6b8c6750f40db0cd8437069faae90",
                "md5": "169f3158fe4419e40c88333e5ebc31fb",
                "sha256": "41431aec5f48ae50d88dba6ef4d85ff73a9fa4c19a79b06a11ee664594a786ce"
            },
            "downloads": -1,
            "filename": "pyvtorch-1.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "169f3158fe4419e40c88333e5ebc31fb",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11.0",
            "size": 20318,
            "upload_time": "2024-10-07T17:34:55",
            "upload_time_iso_8601": "2024-10-07T17:34:55.971876Z",
            "url": "https://files.pythonhosted.org/packages/84/a7/bf194103e31e0b4212ad0ead0f10a9d6b8c6750f40db0cd8437069faae90/pyvtorch-1.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-07 17:34:55",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "0xInfty",
    "github_project": "PyVTorch",
    "github_not_found": true,
    "lcname": "pyvtorch"
}
        
Elapsed time: 2.79964s