# Pyxelpefect: Bioinformatic image-processing in pure Python
[![pypi package](https://img.shields.io/pypi/v/pyxelperfect.svg)](https://pypi.python.org/project/pyxelperfect/)
[![python](https://img.shields.io/pypi/pyversions/pyxelperfect.svg)](https://pypi.python.org/project/pyxelperfect/)
*Github:* <http://github.com/sifrimlab/pyxelperfect>
*Author*: david.wouters@kuleuven.be
## Description
This repository represents a collection of useful functions that are used in all bioinformatic image processing performed by the sifrimlab. It's divided into different modules each with their own theme, and each modules hosts several standalone functions that can be useful in any application.
## Setup/Installation
This python package is available from pypi:
```python
pip install pyxelperfect
```
For tensorflow powered functionality (e.g.: Stardist and cellpose segmentation) install additional requirements:
```python
pip install pyxelperfect[tensor]
```
## Documentation
**Under construction**
## Citation
If you use this repository or any of its modules for your analysis, please cite this github:
```bibtex
@misc{wouters,
title={Sifrimlab/pyxelperfect: Collection of image-processing tools for bioinformatic applications},
url={https://github.com/sifrimlab/pyxelperfect},
journal={GitHub},
author={Wouters, David}}
```
Raw data
{
"_id": null,
"home_page": "https://github.com/sifrimlab/pyxelperfect",
"name": "pyxelperfect",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "image-processing",
"author": "LMIB",
"author_email": "david.wouters@kuleuven.be",
"download_url": "https://files.pythonhosted.org/packages/39/fd/57d0ffacf3fc1cce96be9724a1c6534360e7bdec7cde1ebf758e2c01d0d6/pyxelperfect-0.1.10.tar.gz",
"platform": null,
"description": "# Pyxelpefect: Bioinformatic image-processing in pure Python\n[![pypi package](https://img.shields.io/pypi/v/pyxelperfect.svg)](https://pypi.python.org/project/pyxelperfect/)\n[![python](https://img.shields.io/pypi/pyversions/pyxelperfect.svg)](https://pypi.python.org/project/pyxelperfect/)\n\n*Github:* <http://github.com/sifrimlab/pyxelperfect> \n\n*Author*: david.wouters@kuleuven.be\n## Description\nThis repository represents a collection of useful functions that are used in all bioinformatic image processing performed by the sifrimlab. It's divided into different modules each with their own theme, and each modules hosts several standalone functions that can be useful in any application.\n\n\n## Setup/Installation\n\nThis python package is available from pypi:\n\n```python\npip install pyxelperfect\n```\nFor tensorflow powered functionality (e.g.: Stardist and cellpose segmentation) install additional requirements:\n\n```python\npip install pyxelperfect[tensor]\n```\n\n## Documentation\n**Under construction**\n\n## Citation\nIf you use this repository or any of its modules for your analysis, please cite this github:\n```bibtex\n @misc{wouters,\n title={Sifrimlab/pyxelperfect: Collection of image-processing tools for bioinformatic applications},\n url={https://github.com/sifrimlab/pyxelperfect},\n journal={GitHub},\n author={Wouters, David}} \n```\n\n\n",
"bugtrack_url": null,
"license": null,
"summary": "Collection of python powered image-processing functions",
"version": "0.1.10",
"project_urls": {
"Bug Reports": "https://github.com/sifrimlab/pyxelperfect",
"Homepage": "https://github.com/sifrimlab/pyxelperfect",
"Source": "https://github.com/sifrimlab/pyxelperfect"
},
"split_keywords": [
"image-processing"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "f792b8d3868f05ab6e8b65968fb265b5d00febc637779ba6a95c7d512920df63",
"md5": "1ad08933c7b828ab6b907520500fd5d1",
"sha256": "fb66c18a17951635536588c520e2786854b226b1fa73e9a058b93b257cc7caeb"
},
"downloads": -1,
"filename": "pyxelperfect-0.1.10-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "1ad08933c7b828ab6b907520500fd5d1",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": ">=3.8",
"size": 49685,
"upload_time": "2024-03-29T10:28:57",
"upload_time_iso_8601": "2024-03-29T10:28:57.274992Z",
"url": "https://files.pythonhosted.org/packages/f7/92/b8d3868f05ab6e8b65968fb265b5d00febc637779ba6a95c7d512920df63/pyxelperfect-0.1.10-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "39fd57d0ffacf3fc1cce96be9724a1c6534360e7bdec7cde1ebf758e2c01d0d6",
"md5": "10c35028e20f37006e578dd75fa5f989",
"sha256": "5a5ba55b5b666a4126494a128ad512306fc464dd5b2baf52605fbb5a57b7c435"
},
"downloads": -1,
"filename": "pyxelperfect-0.1.10.tar.gz",
"has_sig": false,
"md5_digest": "10c35028e20f37006e578dd75fa5f989",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 44878,
"upload_time": "2024-03-29T10:29:13",
"upload_time_iso_8601": "2024-03-29T10:29:13.838457Z",
"url": "https://files.pythonhosted.org/packages/39/fd/57d0ffacf3fc1cce96be9724a1c6534360e7bdec7cde1ebf758e2c01d0d6/pyxelperfect-0.1.10.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-03-29 10:29:13",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "sifrimlab",
"github_project": "pyxelperfect",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "pyxelperfect"
}