qa-genie


Nameqa-genie JSON
Version 1.0.0a4 PyPI version JSON
download
home_page
SummaryGenerating Question Answer Database from Unstructured Text
upload_time2024-01-31 16:26:33
maintainer
docs_urlNone
authorIrsh Vijayvargia
requires_python>=3.9
licenseThe Unlicense
keywords python question generation question answer nlp llm llm for question answering huggingface
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # QA Genie

English | [हिंदी](README_hi.md) 

QA Genie is a Python package designed for generating questions and answers from unstructured data.

This package is built using the unofficial API of HuggingChat: [hugchat](https://pypi.org/project/hugchat/). It leverages HuggingChat's capabilities for question and answer generation.


[![PyPi](https://img.shields.io/pypi/v/qa_genie.svg?logo=pypi&logoColor=white)](https://pypi.python.org/pypi/qa_genie)
[![Support_Platform](https://img.shields.io/badge/3.9+-%234ea94b.svg?logo=python&logoColor=white)](https://pypi.python.org/pypi/qa_genie)
[![Status](https://img.shields.io/badge/status-operational-%234ea94b.svg?logo=ok&logoColor=white)](https://pypi.python.org/pypi/qa_genie)
[![Downloads](https://static.pepy.tech/badge/qa_genie?logo=download&logoColor=white)](https://www.pepy.tech/projects/qa_genie)

> **Note**
>
> This package is in its alpha release and more functionality will be added soon! <br>
> **Update 1.0.0a3:** This update enables the user to adjust iteration time. (Solves #1) 
> **Update 1.0.0a4:** Enables user to get raw text output from chatbot for manual cleaning. Also fixes bugs in cleaning.


## Installation
```bash
pip install qa_genie
```
or
```bash
pip3 install qa_genie
```


## Usage
```python
email = "your_email@example.com" # huggingface account email
password = "your_password" # huggingface account password
model = "meta" # use "meta" to use meta-llama/Llama-2-70b-chat-hf or "oasst" to use OpenAssistant/oasst-sft-6-llama-30b

# Initialize chatbot
chatbot = get_generator(email, password, model)

# Example usage with a single text
text = "Lorem ipsum dolor sit amet, consectetur adipiscing elit."
result_single = extract_qa(chatbot, text, num_qn=3) # returns pandas.DataFrame with num_qn questions and answers

# Example usage with multiple texts
texts = ["Text 1", "Text 2", "Text 3"]
result_multiple = extract_qas(chatbot, texts, num_qn_each=3) # return pandas.DataFrame with num_qn_each questions and answers generated for each text
```

## Important Note
As mentioned by [Soulter](github.com/Soulter), Server resources are precious, it is not recommended to request this API in a high frequency.

## Contributing
Feel free to contribute to QA Genie by creating issues, submitting pull requests, or suggesting improvements. Your contributions are highly appreciated :)

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "qa-genie",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": "",
    "keywords": "python,question generation,question answer,nlp,llm,llm for question answering,huggingface",
    "author": "Irsh Vijayvargia",
    "author_email": "<irsh.iitkgp@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/42/b5/f50a8810f0be98510f053d0601d61668025ecced9ef6f668f46f188e6eca/qa_genie-1.0.0a4.tar.gz",
    "platform": null,
    "description": "# QA Genie\n\nEnglish | [\u0939\u093f\u0902\u0926\u0940](README_hi.md) \n\nQA Genie is a Python package designed for generating questions and answers from unstructured data.\n\nThis package is built using the unofficial API of HuggingChat: [hugchat](https://pypi.org/project/hugchat/). It leverages HuggingChat's capabilities for question and answer generation.\n\n\n[![PyPi](https://img.shields.io/pypi/v/qa_genie.svg?logo=pypi&logoColor=white)](https://pypi.python.org/pypi/qa_genie)\n[![Support_Platform](https://img.shields.io/badge/3.9+-%234ea94b.svg?logo=python&logoColor=white)](https://pypi.python.org/pypi/qa_genie)\n[![Status](https://img.shields.io/badge/status-operational-%234ea94b.svg?logo=ok&logoColor=white)](https://pypi.python.org/pypi/qa_genie)\n[![Downloads](https://static.pepy.tech/badge/qa_genie?logo=download&logoColor=white)](https://www.pepy.tech/projects/qa_genie)\n\n> **Note**\n>\n> This package is in its alpha release and more functionality will be added soon! <br>\n> **Update 1.0.0a3:** This update enables the user to adjust iteration time. (Solves #1) \n> **Update 1.0.0a4:** Enables user to get raw text output from chatbot for manual cleaning. Also fixes bugs in cleaning.\n\n\n## Installation\n```bash\npip install qa_genie\n```\nor\n```bash\npip3 install qa_genie\n```\n\n\n## Usage\n```python\nemail = \"your_email@example.com\" # huggingface account email\npassword = \"your_password\" # huggingface account password\nmodel = \"meta\" # use \"meta\" to use meta-llama/Llama-2-70b-chat-hf or \"oasst\" to use OpenAssistant/oasst-sft-6-llama-30b\n\n# Initialize chatbot\nchatbot = get_generator(email, password, model)\n\n# Example usage with a single text\ntext = \"Lorem ipsum dolor sit amet, consectetur adipiscing elit.\"\nresult_single = extract_qa(chatbot, text, num_qn=3) # returns pandas.DataFrame with num_qn questions and answers\n\n# Example usage with multiple texts\ntexts = [\"Text 1\", \"Text 2\", \"Text 3\"]\nresult_multiple = extract_qas(chatbot, texts, num_qn_each=3) # return pandas.DataFrame with num_qn_each questions and answers generated for each text\n```\n\n## Important Note\nAs mentioned by [Soulter](github.com/Soulter), Server resources are precious, it is not recommended to request this API in a high frequency.\n\n## Contributing\nFeel free to contribute to QA Genie by creating issues, submitting pull requests, or suggesting improvements. Your contributions are highly appreciated :)\n",
    "bugtrack_url": null,
    "license": "The Unlicense",
    "summary": "Generating Question Answer Database from Unstructured Text",
    "version": "1.0.0a4",
    "project_urls": {
        "GitHub": "https://github.com/1rsh/qa-genie"
    },
    "split_keywords": [
        "python",
        "question generation",
        "question answer",
        "nlp",
        "llm",
        "llm for question answering",
        "huggingface"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "485c9f120a65d0a93131a3e28c23d81ae793fdfe263873de60a31b9e7f83ed79",
                "md5": "f9226c573900f1e1f74ddf4e175efff4",
                "sha256": "11f2138fa1bf80605ae11a13b64d0a8d0385e95a7ea8d39e6cd56c8539507fc1"
            },
            "downloads": -1,
            "filename": "qa_genie-1.0.0a4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f9226c573900f1e1f74ddf4e175efff4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 4731,
            "upload_time": "2024-01-31T16:26:30",
            "upload_time_iso_8601": "2024-01-31T16:26:30.315307Z",
            "url": "https://files.pythonhosted.org/packages/48/5c/9f120a65d0a93131a3e28c23d81ae793fdfe263873de60a31b9e7f83ed79/qa_genie-1.0.0a4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "42b5f50a8810f0be98510f053d0601d61668025ecced9ef6f668f46f188e6eca",
                "md5": "fa15c0dc9e702bebc4d6da36293082b8",
                "sha256": "c65b77369d46363b2aed3135aa02dafa357e25bce0e3201ee7bd37c5b0fa3968"
            },
            "downloads": -1,
            "filename": "qa_genie-1.0.0a4.tar.gz",
            "has_sig": false,
            "md5_digest": "fa15c0dc9e702bebc4d6da36293082b8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 6305,
            "upload_time": "2024-01-31T16:26:33",
            "upload_time_iso_8601": "2024-01-31T16:26:33.831989Z",
            "url": "https://files.pythonhosted.org/packages/42/b5/f50a8810f0be98510f053d0601d61668025ecced9ef6f668f46f188e6eca/qa_genie-1.0.0a4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-31 16:26:33",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "1rsh",
    "github_project": "qa-genie",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "qa-genie"
}
        
Elapsed time: 0.38056s