# Aer - high performance quantum circuit simulation for Qiskit
[![License](https://img.shields.io/github/license/Qiskit/qiskit-aer.svg?style=popout-square)](https://opensource.org/licenses/Apache-2.0)
[![Build](https://github.com/Qiskit/qiskit-aer/actions/workflows/build.yml/badge.svg?branch=main)](https://github.com/Qiskit/qiskit-aer/actions/workflows/build.yml)
[![Tests](https://github.com/Qiskit/qiskit-aer/actions/workflows/tests.yml/badge.svg?branch=main)](https://github.com/Qiskit/qiskit-aer/actions/workflows/tests.yml)
[![](https://img.shields.io/github/release/Qiskit/qiskit-aer.svg?style=popout-square)](https://github.com/Qiskit/qiskit-aer/releases)
[![](https://img.shields.io/pypi/dm/qiskit-aer.svg?style=popout-square)](https://pypi.org/project/qiskit-aer/)
**Aer** is a high performance simulator for quantum circuits written in Qiskit, that includes realistic noise models.
## Installation
We encourage installing Aer via the pip tool (a python package manager):
```bash
pip install qiskit-aer
```
Pip will handle all dependencies automatically for us, and you will always install the latest (and well-tested) version.
To install from source, follow the instructions in the [contribution guidelines](CONTRIBUTING.md).
## Installing GPU support
In order to install and run the GPU supported simulators on Linux, you need CUDA® 11.2 or newer previously installed.
CUDA® itself would require a set of specific GPU drivers. Please follow CUDA® installation procedure in the NVIDIA® [web](https://www.nvidia.com/drivers).
If you want to install our GPU supported simulators, you have to install this other package:
```bash
pip install qiskit-aer-gpu
```
The package above is for CUDA® 12, so if your system has CUDA® 11 installed, install separate package:
```bash
pip install qiskit-aer-gpu-cu11
```
This will overwrite your current `qiskit-aer` package installation giving you
the same functionality found in the canonical `qiskit-aer` package, plus the
ability to run the GPU supported simulators: statevector, density matrix, and unitary.
**Note**: This package is only available on x86_64 Linux. For other platforms
that have CUDA support, you will have to build from source. You can refer to
the [contributing guide](CONTRIBUTING.md#building-with-gpu-support)
for instructions on doing this.
## Simulating your first Qiskit circuit with Aer
Now that you have Aer installed, you can start simulating quantum circuits using primitives and noise models. Here is a basic example:
```
$ python
```
```python
from qiskit import transpile
from qiskit.circuit.library import RealAmplitudes
from qiskit.quantum_info import SparsePauliOp
from qiskit_aer import AerSimulator
sim = AerSimulator()
# --------------------------
# Simulating using estimator
#---------------------------
from qiskit_aer.primitives import EstimatorV2
psi1 = transpile(RealAmplitudes(num_qubits=2, reps=2), sim, optimization_level=0)
psi2 = transpile(RealAmplitudes(num_qubits=2, reps=3), sim, optimization_level=0)
H1 = SparsePauliOp.from_list([("II", 1), ("IZ", 2), ("XI", 3)])
H2 = SparsePauliOp.from_list([("IZ", 1)])
H3 = SparsePauliOp.from_list([("ZI", 1), ("ZZ", 1)])
theta1 = [0, 1, 1, 2, 3, 5]
theta2 = [0, 1, 1, 2, 3, 5, 8, 13]
theta3 = [1, 2, 3, 4, 5, 6]
estimator = EstimatorV2()
# calculate [ [<psi1(theta1)|H1|psi1(theta1)>,
# <psi1(theta3)|H3|psi1(theta3)>],
# [<psi2(theta2)|H2|psi2(theta2)>] ]
job = estimator.run(
[
(psi1, [H1, H3], [theta1, theta3]),
(psi2, H2, theta2)
],
precision=0.01
)
result = job.result()
print(f"expectation values : psi1 = {result[0].data.evs}, psi2 = {result[1].data.evs}")
# --------------------------
# Simulating using sampler
# --------------------------
from qiskit_aer.primitives import SamplerV2
from qiskit import QuantumCircuit
# create a Bell circuit
bell = QuantumCircuit(2)
bell.h(0)
bell.cx(0, 1)
bell.measure_all()
# create two parameterized circuits
pqc = RealAmplitudes(num_qubits=2, reps=2)
pqc.measure_all()
pqc = transpile(pqc, sim, optimization_level=0)
pqc2 = RealAmplitudes(num_qubits=2, reps=3)
pqc2.measure_all()
pqc2 = transpile(pqc2, sim, optimization_level=0)
theta1 = [0, 1, 1, 2, 3, 5]
theta2 = [0, 1, 2, 3, 4, 5, 6, 7]
# initialization of the sampler
sampler = SamplerV2()
# collect 128 shots from the Bell circuit
job = sampler.run([bell], shots=128)
job_result = job.result()
print(f"counts for Bell circuit : {job_result[0].data.meas.get_counts()}")
# run a sampler job on the parameterized circuits
job2 = sampler.run([(pqc, theta1), (pqc2, theta2)])
job_result = job2.result()
print(f"counts for parameterized circuit : {job_result[0].data.meas.get_counts()}")
# --------------------------------------------------
# Simulating with noise model from actual hardware
# --------------------------------------------------
from qiskit_ibm_runtime import QiskitRuntimeService
provider = QiskitRuntimeService(channel='ibm_quantum', token="set your own token here")
backend = provider.get_backend("ibm_kyoto")
# create sampler from the actual backend
sampler = SamplerV2.from_backend(backend)
# run a sampler job on the parameterized circuits with noise model of the actual hardware
bell_t = transpile(bell, AerSimulator(basis_gates=["ecr", "id", "rz", "sx"]), optimization_level=0)
job3 = sampler.run([bell_t], shots=128)
job_result = job3.result()
print(f"counts for Bell circuit w/noise: {job_result[0].data.meas.get_counts()}")
```
## Contribution Guidelines
If you'd like to contribute to Aer, please take a look at our
[contribution guidelines](CONTRIBUTING.md). This project adheres to Qiskit's [code of conduct](CODE_OF_CONDUCT.md). By participating, you are expected to uphold this code.
We use [GitHub issues](https://github.com/Qiskit/qiskit-aer/issues) for tracking requests and bugs. Please use our [slack](https://qiskit.slack.com) for discussion and simple questions. To join our Slack community use the [link](https://qiskit.slack.com/join/shared_invite/zt-fybmq791-hYRopcSH6YetxycNPXgv~A#/). For questions that are more suited for a forum, we use the Qiskit tag in the [Stack Exchange](https://quantumcomputing.stackexchange.com/questions/tagged/qiskit).
## Next Steps
Now you're set up and ready to check out some of the other examples from the [Aer documentation](https://qiskit.github.io/qiskit-aer/).
## Authors and Citation
Aer is the work of [many people](https://github.com/Qiskit/qiskit-aer/graphs/contributors) who contribute to the project at different levels.
If you use Qiskit, please cite as per the included [BibTeX file](https://github.com/Qiskit/qiskit/blob/main/CITATION.bib).
## License
[Apache License 2.0](LICENSE.txt)
Raw data
{
"_id": null,
"home_page": "https://github.com/Qiskit/qiskit-aer",
"name": "qiskit-aer-gpu-cu11",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "qiskit, simulator, quantum computing, backend",
"author": "AER Development Team",
"author_email": "qiskit@us.ibm.com",
"download_url": null,
"platform": null,
"description": "# Aer - high performance quantum circuit simulation for Qiskit\n\n[![License](https://img.shields.io/github/license/Qiskit/qiskit-aer.svg?style=popout-square)](https://opensource.org/licenses/Apache-2.0)\n[![Build](https://github.com/Qiskit/qiskit-aer/actions/workflows/build.yml/badge.svg?branch=main)](https://github.com/Qiskit/qiskit-aer/actions/workflows/build.yml)\n[![Tests](https://github.com/Qiskit/qiskit-aer/actions/workflows/tests.yml/badge.svg?branch=main)](https://github.com/Qiskit/qiskit-aer/actions/workflows/tests.yml)\n[![](https://img.shields.io/github/release/Qiskit/qiskit-aer.svg?style=popout-square)](https://github.com/Qiskit/qiskit-aer/releases)\n[![](https://img.shields.io/pypi/dm/qiskit-aer.svg?style=popout-square)](https://pypi.org/project/qiskit-aer/)\n\n**Aer** is a high performance simulator for quantum circuits written in Qiskit, that includes realistic noise models.\n\n## Installation\n\nWe encourage installing Aer via the pip tool (a python package manager):\n\n```bash\npip install qiskit-aer\n```\n\nPip will handle all dependencies automatically for us, and you will always install the latest (and well-tested) version.\n\nTo install from source, follow the instructions in the [contribution guidelines](CONTRIBUTING.md).\n\n## Installing GPU support\n\nIn order to install and run the GPU supported simulators on Linux, you need CUDA® 11.2 or newer previously installed.\nCUDA® itself would require a set of specific GPU drivers. Please follow CUDA® installation procedure in the NVIDIA® [web](https://www.nvidia.com/drivers).\n\nIf you want to install our GPU supported simulators, you have to install this other package:\n\n```bash\npip install qiskit-aer-gpu\n```\n\nThe package above is for CUDA® 12, so if your system has CUDA® 11 installed, install separate package:\n```bash\npip install qiskit-aer-gpu-cu11\n```\n\nThis will overwrite your current `qiskit-aer` package installation giving you\nthe same functionality found in the canonical `qiskit-aer` package, plus the\nability to run the GPU supported simulators: statevector, density matrix, and unitary.\n\n**Note**: This package is only available on x86_64 Linux. For other platforms\nthat have CUDA support, you will have to build from source. You can refer to\nthe [contributing guide](CONTRIBUTING.md#building-with-gpu-support)\nfor instructions on doing this.\n\n## Simulating your first Qiskit circuit with Aer\nNow that you have Aer installed, you can start simulating quantum circuits using primitives and noise models. Here is a basic example:\n\n```\n$ python\n```\n\n```python\nfrom qiskit import transpile\nfrom qiskit.circuit.library import RealAmplitudes\nfrom qiskit.quantum_info import SparsePauliOp\nfrom qiskit_aer import AerSimulator\n\nsim = AerSimulator()\n# --------------------------\n# Simulating using estimator\n#---------------------------\nfrom qiskit_aer.primitives import EstimatorV2\n\npsi1 = transpile(RealAmplitudes(num_qubits=2, reps=2), sim, optimization_level=0)\npsi2 = transpile(RealAmplitudes(num_qubits=2, reps=3), sim, optimization_level=0)\n\nH1 = SparsePauliOp.from_list([(\"II\", 1), (\"IZ\", 2), (\"XI\", 3)])\nH2 = SparsePauliOp.from_list([(\"IZ\", 1)])\nH3 = SparsePauliOp.from_list([(\"ZI\", 1), (\"ZZ\", 1)])\n\ntheta1 = [0, 1, 1, 2, 3, 5]\ntheta2 = [0, 1, 1, 2, 3, 5, 8, 13]\ntheta3 = [1, 2, 3, 4, 5, 6]\n\nestimator = EstimatorV2()\n\n# calculate [ [<psi1(theta1)|H1|psi1(theta1)>,\n# <psi1(theta3)|H3|psi1(theta3)>],\n# [<psi2(theta2)|H2|psi2(theta2)>] ]\njob = estimator.run(\n [\n (psi1, [H1, H3], [theta1, theta3]),\n (psi2, H2, theta2)\n ],\n precision=0.01\n)\nresult = job.result()\nprint(f\"expectation values : psi1 = {result[0].data.evs}, psi2 = {result[1].data.evs}\")\n\n# --------------------------\n# Simulating using sampler\n# --------------------------\nfrom qiskit_aer.primitives import SamplerV2\nfrom qiskit import QuantumCircuit\n\n# create a Bell circuit\nbell = QuantumCircuit(2)\nbell.h(0)\nbell.cx(0, 1)\nbell.measure_all()\n\n# create two parameterized circuits\npqc = RealAmplitudes(num_qubits=2, reps=2)\npqc.measure_all()\npqc = transpile(pqc, sim, optimization_level=0)\npqc2 = RealAmplitudes(num_qubits=2, reps=3)\npqc2.measure_all()\npqc2 = transpile(pqc2, sim, optimization_level=0)\n\ntheta1 = [0, 1, 1, 2, 3, 5]\ntheta2 = [0, 1, 2, 3, 4, 5, 6, 7]\n\n# initialization of the sampler\nsampler = SamplerV2()\n\n# collect 128 shots from the Bell circuit\njob = sampler.run([bell], shots=128)\njob_result = job.result()\nprint(f\"counts for Bell circuit : {job_result[0].data.meas.get_counts()}\")\n \n# run a sampler job on the parameterized circuits\njob2 = sampler.run([(pqc, theta1), (pqc2, theta2)])\njob_result = job2.result()\nprint(f\"counts for parameterized circuit : {job_result[0].data.meas.get_counts()}\")\n\n# --------------------------------------------------\n# Simulating with noise model from actual hardware\n# --------------------------------------------------\nfrom qiskit_ibm_runtime import QiskitRuntimeService\nprovider = QiskitRuntimeService(channel='ibm_quantum', token=\"set your own token here\")\nbackend = provider.get_backend(\"ibm_kyoto\")\n\n# create sampler from the actual backend\nsampler = SamplerV2.from_backend(backend)\n\n# run a sampler job on the parameterized circuits with noise model of the actual hardware\nbell_t = transpile(bell, AerSimulator(basis_gates=[\"ecr\", \"id\", \"rz\", \"sx\"]), optimization_level=0)\njob3 = sampler.run([bell_t], shots=128)\njob_result = job3.result()\nprint(f\"counts for Bell circuit w/noise: {job_result[0].data.meas.get_counts()}\")\n```\n\n## Contribution Guidelines\n\nIf you'd like to contribute to Aer, please take a look at our\n[contribution guidelines](CONTRIBUTING.md). This project adheres to Qiskit's [code of conduct](CODE_OF_CONDUCT.md). By participating, you are expected to uphold this code.\n\nWe use [GitHub issues](https://github.com/Qiskit/qiskit-aer/issues) for tracking requests and bugs. Please use our [slack](https://qiskit.slack.com) for discussion and simple questions. To join our Slack community use the [link](https://qiskit.slack.com/join/shared_invite/zt-fybmq791-hYRopcSH6YetxycNPXgv~A#/). For questions that are more suited for a forum, we use the Qiskit tag in the [Stack Exchange](https://quantumcomputing.stackexchange.com/questions/tagged/qiskit).\n\n## Next Steps\n\nNow you're set up and ready to check out some of the other examples from the [Aer documentation](https://qiskit.github.io/qiskit-aer/).\n\n## Authors and Citation\n\nAer is the work of [many people](https://github.com/Qiskit/qiskit-aer/graphs/contributors) who contribute to the project at different levels.\nIf you use Qiskit, please cite as per the included [BibTeX file](https://github.com/Qiskit/qiskit/blob/main/CITATION.bib).\n\n## License\n\n[Apache License 2.0](LICENSE.txt)\n",
"bugtrack_url": null,
"license": "Apache 2.0",
"summary": "Aer - High performance simulators for Qiskit",
"version": "0.15.1",
"project_urls": {
"Homepage": "https://github.com/Qiskit/qiskit-aer"
},
"split_keywords": [
"qiskit",
" simulator",
" quantum computing",
" backend"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "3773d12161827bd1649a84a9187f22babc6dfa8fe390d240593073e31b18f50c",
"md5": "83e4a5027982974d44c209a76fc34465",
"sha256": "86c181613eb91f60d44e456b12ebe5a884c8097f7a098e4b565056694ae5017b"
},
"downloads": -1,
"filename": "qiskit_aer_gpu_cu11-0.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "83e4a5027982974d44c209a76fc34465",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.7",
"size": 18024330,
"upload_time": "2024-09-13T07:53:29",
"upload_time_iso_8601": "2024-09-13T07:53:29.424868Z",
"url": "https://files.pythonhosted.org/packages/37/73/d12161827bd1649a84a9187f22babc6dfa8fe390d240593073e31b18f50c/qiskit_aer_gpu_cu11-0.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "dd0775a393f9db88d373d945fa74e5ad3d98257b14f09b8844c3686c00a07891",
"md5": "3c63052167dd90f3f622bf2023622859",
"sha256": "afeb5c3882af8a18dfd8eb2ee11ff124b2ec614b2f6643cb87771eb872158b6c"
},
"downloads": -1,
"filename": "qiskit_aer_gpu_cu11-0.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "3c63052167dd90f3f622bf2023622859",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.7",
"size": 18030100,
"upload_time": "2024-09-13T07:53:32",
"upload_time_iso_8601": "2024-09-13T07:53:32.521333Z",
"url": "https://files.pythonhosted.org/packages/dd/07/75a393f9db88d373d945fa74e5ad3d98257b14f09b8844c3686c00a07891/qiskit_aer_gpu_cu11-0.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8214fb27751686c342327db34b2d1c8b689ef5f928ca63f924a43279a59bfaec",
"md5": "da32236cc6e6dacc2e321432f798a87d",
"sha256": "9a8536d8905bf653ae599caa06d9be969b407e99608ea4b3c118399aa9a73a82"
},
"downloads": -1,
"filename": "qiskit_aer_gpu_cu11-0.15.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "da32236cc6e6dacc2e321432f798a87d",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.7",
"size": 18024441,
"upload_time": "2024-09-13T07:53:35",
"upload_time_iso_8601": "2024-09-13T07:53:35.567891Z",
"url": "https://files.pythonhosted.org/packages/82/14/fb27751686c342327db34b2d1c8b689ef5f928ca63f924a43279a59bfaec/qiskit_aer_gpu_cu11-0.15.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a9cd79abd2d1ac1b4eeb1312b4bd9f9f5ddf4061ad9b843d1ca2e6e246c6dccd",
"md5": "1323dc240eb671287754db68a0367dbc",
"sha256": "aa4e7a1a216ead4c860d99ffc8f6fc4be16b4d77ce376adbe3f040fc18fa375a"
},
"downloads": -1,
"filename": "qiskit_aer_gpu_cu11-0.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "1323dc240eb671287754db68a0367dbc",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.7",
"size": 18030339,
"upload_time": "2024-09-13T07:53:38",
"upload_time_iso_8601": "2024-09-13T07:53:38.665182Z",
"url": "https://files.pythonhosted.org/packages/a9/cd/79abd2d1ac1b4eeb1312b4bd9f9f5ddf4061ad9b843d1ca2e6e246c6dccd/qiskit_aer_gpu_cu11-0.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3378b33741c99f1fffe071a79ed7c75e25a03e882b7c1b8903ce568bc0ba9ef7",
"md5": "d8554d1d25634b3176457f9faf9fdffa",
"sha256": "f976151c4a942f99baf48705afbb85c949f73e3a55519324ec58a3cef2916a94"
},
"downloads": -1,
"filename": "qiskit_aer_gpu_cu11-0.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "d8554d1d25634b3176457f9faf9fdffa",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.7",
"size": 18026494,
"upload_time": "2024-09-13T07:53:41",
"upload_time_iso_8601": "2024-09-13T07:53:41.556581Z",
"url": "https://files.pythonhosted.org/packages/33/78/b33741c99f1fffe071a79ed7c75e25a03e882b7c1b8903ce568bc0ba9ef7/qiskit_aer_gpu_cu11-0.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-13 07:53:29",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Qiskit",
"github_project": "qiskit-aer",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"tox": true,
"lcname": "qiskit-aer-gpu-cu11"
}