<div align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/tony-siqurity-ai/quantiq/main/brand/logos/logo-horizontal-white.png">
<source media="(prefers-color-scheme: light)" srcset="https://raw.githubusercontent.com/tony-siqurity-ai/quantiq/main/brand/logos/logo-horizontal.png">
<img src="https://raw.githubusercontent.com/tony-siqurity-ai/quantiq-brand/main/logos/logo-horizontal.png" alt="quantIQ" width="400">
</picture>
<p><strong>Quantum circuits, simplified.</strong></p>
[](https://badge.fury.io/py/quantiq)
[](https://www.python.org/downloads/)
[](https://opensource.org/licenses/MIT)
[](https://github.com/tony-siqurity-ai/quantiq-web)
[Website](https://quantiq.dev) • [Documentation](https://quantiq.dev/docs) • [Examples](./examples)
</div>
---
## 🚀 Quick Start
```bash
pip install quantiq-dev
```
```python
from quantiq import QuantumCircuit
# Create a Bell state (quantum entanglement)
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)
qc.measure_all()
# Run the circuit
result = qc.run(shots=1000)
print(result)
```
**That's it!** You just created quantum entanglement.
---
## 🎯 What is quantIQ?
**quantIQ** is a Python library for building quantum circuits with a developer-first approach. No quantum physics PhD required.
- 🎯 **Simple API** - Intuitive, Pythonic interface
- ⚡ **Fast** - Optimized quantum circuit simulation
- 📚 **Well Documented** - Clear examples and tutorials
- 🔧 **Extensible** - Easy to add custom gates
- 🌐 **Open Source** - MIT licensed
Perfect for learning, prototyping, and algorithm development.
---
## ✨ Features
### Comprehensive Gate Library
**Single-qubit gates:**
- Pauli gates: `x()`, `y()`, `z()`
- Hadamard: `h()`
- Rotations: `rx()`, `ry()`, `rz()`
**Two-qubit gates:**
- `cx()` - CNOT (controlled-NOT)
- `cz()` - Controlled-Z
- More coming soon!
### Method Chaining
```python
qc = QuantumCircuit(3)
qc.h(0).h(1).h(2).cx(0, 1).cx(1, 2).measure_all()
```
### Circuit Information
```python
print(qc)
# Output: QuantumCircuit(3 qubits, 6 gates)
```
---
## 📖 Examples
### Bell State
```python
from quantiq import QuantumCircuit
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)
qc.measure_all()
result = qc.run(shots=1000)
# Perfect correlation: ~50% |00⟩ and ~50% |11⟩
```
### GHZ State (3-qubit Entanglement)
```python
from quantiq import QuantumCircuit
qc = QuantumCircuit(3)
qc.h(0)
qc.cx(0, 1)
qc.cx(1, 2)
qc.measure_all()
result = qc.run(shots=1000)
# Result: ~50% |000⟩ and ~50% |111⟩
```
### Superposition
```python
from quantiq import QuantumCircuit
qc = QuantumCircuit(1)
qc.h(0) # Create superposition
qc.measure_all()
result = qc.run(shots=1000)
# Result: ~50% |0⟩ and ~50% |1⟩
```
**📁 More examples:** [examples/](./examples)
---
## 🛠️ Installation
### Requirements
- Python 3.11 or higher
- NumPy
### Install from PyPI
```bash
pip install quantiq-dev
```
### Install from Source
```bash
git clone https://github.com/tony-siqurity-ai/quantiq-web.git
cd quantiq-web
pip install -e .
```
---
## 📚 Documentation
Full documentation is available at [docs.quantiq.dev](https://quantiq.dev/docs)
- [Getting Started](https://quantiq.dev/docs)
- [API Reference](https://quantiq.dev/docs)
- [Examples](./examples)
---
## 🗺️ Roadmap
### ✅ v1.0 (Current)
- [x] Core quantum gates (H, X, Y, Z, CX)
- [x] Basic statevector simulation
- [x] Method chaining API
- [x] PyPI package
### 🚧 v1.1 (Next)
- [ ] Circuit visualization
- [ ] More quantum gates (CZ, SWAP, Toffoli)
- [ ] Result analysis tools
- [ ] Performance optimizations
### 🔮 Future
- [ ] Advanced quantum algorithms
- [ ] Noise simulation
- [ ] GPU-accelerated simulation
- [ ] Cloud API
**See our [full roadmap](https://github.com/tony-siqurity-ai/quantiq-web/issues) →**
---
## 🤝 Contributing
Contributions are welcome! Here's how you can help:
- 🐛 Report bugs by [opening an issue](https://github.com/tony-siqurity-ai/quantiq-web/issues)
- ✨ Suggest features in [discussions](https://github.com/tony-siqurity-ai/quantiq-web/discussions)
- 📝 Improve documentation
- 🔧 Submit pull requests
See [CONTRIBUTING.md](./CONTRIBUTING.md) for guidelines.
### Development Setup
```bash
# Clone the repository
git clone https://github.com/tony-siqurity-ai/quantiq-web.git
cd quantiq-web
# Install in development mode
pip install -e .
# Run tests (if you have them)
python -m pytest tests/
```
---
## 📄 License
quantIQ is released under the [MIT License](./LICENSE).
---
## 🙏 Acknowledgments
Built for the quantum computing community.
Special thanks to early adopters and contributors!
---
## 🗺️ Roadmap
See our [public roadmap](https://github.com/users/tony-siqurity-ai/projects/1) for upcoming features and Cloud API development.
Want to influence what we build? [Open a discussion](https://github.com/tony-siqurity-ai/quantiq-web/discussions)!
---
<div align="center">
**⭐ Star us on GitHub if you find quantIQ useful!**
Made with ⚛️ by the quantIQ team
[Get Started](https://quantiq.dev/docs) • [GitHub](https://github.com/tony-siqurity-ai/quantiq-web) • [PyPI](https://pypi.org/project/quantiq/)
</div>
Raw data
{
"_id": null,
"home_page": null,
"name": "quantiq-dev",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.11",
"maintainer_email": null,
"keywords": "quantum, quantum-computing, simulator, qubits, education, learning",
"author": null,
"author_email": "Tony Rossi <anthony.rossi1983@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/3b/5b/155f5673f86ecb40c843cee1aa2f22d6f758f2cc83ee2d25e664c045c1af/quantiq_dev-1.2.2.tar.gz",
"platform": null,
"description": "<div align=\"center\">\r\n <picture>\r\n <source media=\"(prefers-color-scheme: dark)\" srcset=\"https://raw.githubusercontent.com/tony-siqurity-ai/quantiq/main/brand/logos/logo-horizontal-white.png\">\r\n <source media=\"(prefers-color-scheme: light)\" srcset=\"https://raw.githubusercontent.com/tony-siqurity-ai/quantiq/main/brand/logos/logo-horizontal.png\">\r\n <img src=\"https://raw.githubusercontent.com/tony-siqurity-ai/quantiq-brand/main/logos/logo-horizontal.png\" alt=\"quantIQ\" width=\"400\">\r\n </picture>\r\n\r\n <p><strong>Quantum circuits, simplified.</strong></p>\r\n\r\n [](https://badge.fury.io/py/quantiq)\r\n [](https://www.python.org/downloads/)\r\n [](https://opensource.org/licenses/MIT)\r\n [](https://github.com/tony-siqurity-ai/quantiq-web)\r\n\r\n [Website](https://quantiq.dev) \u2022 [Documentation](https://quantiq.dev/docs) \u2022 [Examples](./examples)\r\n</div>\r\n\r\n---\r\n\r\n## \ud83d\ude80 Quick Start\r\n\r\n```bash\r\npip install quantiq-dev\r\n```\r\n\r\n```python\r\nfrom quantiq import QuantumCircuit\r\n\r\n# Create a Bell state (quantum entanglement)\r\nqc = QuantumCircuit(2)\r\nqc.h(0)\r\nqc.cx(0, 1)\r\nqc.measure_all()\r\n\r\n# Run the circuit\r\nresult = qc.run(shots=1000)\r\nprint(result)\r\n```\r\n\r\n**That's it!** You just created quantum entanglement.\r\n\r\n---\r\n\r\n## \ud83c\udfaf What is quantIQ?\r\n\r\n**quantIQ** is a Python library for building quantum circuits with a developer-first approach. No quantum physics PhD required.\r\n\r\n- \ud83c\udfaf **Simple API** - Intuitive, Pythonic interface\r\n- \u26a1 **Fast** - Optimized quantum circuit simulation\r\n- \ud83d\udcda **Well Documented** - Clear examples and tutorials\r\n- \ud83d\udd27 **Extensible** - Easy to add custom gates\r\n- \ud83c\udf10 **Open Source** - MIT licensed\r\n\r\nPerfect for learning, prototyping, and algorithm development.\r\n\r\n---\r\n\r\n## \u2728 Features\r\n\r\n### Comprehensive Gate Library\r\n\r\n**Single-qubit gates:**\r\n- Pauli gates: `x()`, `y()`, `z()`\r\n- Hadamard: `h()`\r\n- Rotations: `rx()`, `ry()`, `rz()`\r\n\r\n**Two-qubit gates:**\r\n- `cx()` - CNOT (controlled-NOT)\r\n- `cz()` - Controlled-Z\r\n- More coming soon!\r\n\r\n### Method Chaining\r\n\r\n```python\r\nqc = QuantumCircuit(3)\r\nqc.h(0).h(1).h(2).cx(0, 1).cx(1, 2).measure_all()\r\n```\r\n\r\n### Circuit Information\r\n\r\n```python\r\nprint(qc)\r\n# Output: QuantumCircuit(3 qubits, 6 gates)\r\n```\r\n\r\n---\r\n\r\n## \ud83d\udcd6 Examples\r\n\r\n### Bell State\r\n\r\n```python\r\nfrom quantiq import QuantumCircuit\r\n\r\nqc = QuantumCircuit(2)\r\nqc.h(0)\r\nqc.cx(0, 1)\r\nqc.measure_all()\r\n\r\nresult = qc.run(shots=1000)\r\n# Perfect correlation: ~50% |00\u27e9 and ~50% |11\u27e9\r\n```\r\n\r\n### GHZ State (3-qubit Entanglement)\r\n\r\n```python\r\nfrom quantiq import QuantumCircuit\r\n\r\nqc = QuantumCircuit(3)\r\nqc.h(0)\r\nqc.cx(0, 1)\r\nqc.cx(1, 2)\r\nqc.measure_all()\r\n\r\nresult = qc.run(shots=1000)\r\n# Result: ~50% |000\u27e9 and ~50% |111\u27e9\r\n```\r\n\r\n### Superposition\r\n\r\n```python\r\nfrom quantiq import QuantumCircuit\r\n\r\nqc = QuantumCircuit(1)\r\nqc.h(0) # Create superposition\r\nqc.measure_all()\r\n\r\nresult = qc.run(shots=1000)\r\n# Result: ~50% |0\u27e9 and ~50% |1\u27e9\r\n```\r\n\r\n**\ud83d\udcc1 More examples:** [examples/](./examples)\r\n\r\n---\r\n\r\n## \ud83d\udee0\ufe0f Installation\r\n\r\n### Requirements\r\n\r\n- Python 3.11 or higher\r\n- NumPy\r\n\r\n### Install from PyPI\r\n\r\n```bash\r\npip install quantiq-dev\r\n```\r\n\r\n### Install from Source\r\n\r\n```bash\r\ngit clone https://github.com/tony-siqurity-ai/quantiq-web.git\r\ncd quantiq-web\r\npip install -e .\r\n```\r\n\r\n---\r\n\r\n## \ud83d\udcda Documentation\r\n\r\nFull documentation is available at [docs.quantiq.dev](https://quantiq.dev/docs)\r\n\r\n- [Getting Started](https://quantiq.dev/docs)\r\n- [API Reference](https://quantiq.dev/docs)\r\n- [Examples](./examples)\r\n\r\n---\r\n\r\n## \ud83d\uddfa\ufe0f Roadmap\r\n\r\n### \u2705 v1.0 (Current)\r\n- [x] Core quantum gates (H, X, Y, Z, CX)\r\n- [x] Basic statevector simulation\r\n- [x] Method chaining API\r\n- [x] PyPI package\r\n\r\n### \ud83d\udea7 v1.1 (Next)\r\n- [ ] Circuit visualization\r\n- [ ] More quantum gates (CZ, SWAP, Toffoli)\r\n- [ ] Result analysis tools\r\n- [ ] Performance optimizations\r\n\r\n### \ud83d\udd2e Future\r\n- [ ] Advanced quantum algorithms\r\n- [ ] Noise simulation\r\n- [ ] GPU-accelerated simulation\r\n- [ ] Cloud API\r\n\r\n**See our [full roadmap](https://github.com/tony-siqurity-ai/quantiq-web/issues) \u2192**\r\n\r\n---\r\n\r\n## \ud83e\udd1d Contributing\r\n\r\nContributions are welcome! Here's how you can help:\r\n\r\n- \ud83d\udc1b Report bugs by [opening an issue](https://github.com/tony-siqurity-ai/quantiq-web/issues)\r\n- \u2728 Suggest features in [discussions](https://github.com/tony-siqurity-ai/quantiq-web/discussions)\r\n- \ud83d\udcdd Improve documentation\r\n- \ud83d\udd27 Submit pull requests\r\n\r\nSee [CONTRIBUTING.md](./CONTRIBUTING.md) for guidelines.\r\n\r\n### Development Setup\r\n\r\n```bash\r\n# Clone the repository\r\ngit clone https://github.com/tony-siqurity-ai/quantiq-web.git\r\ncd quantiq-web\r\n\r\n# Install in development mode\r\npip install -e .\r\n\r\n# Run tests (if you have them)\r\npython -m pytest tests/\r\n```\r\n\r\n---\r\n\r\n## \ud83d\udcc4 License\r\n\r\nquantIQ is released under the [MIT License](./LICENSE).\r\n\r\n---\r\n\r\n## \ud83d\ude4f Acknowledgments\r\n\r\nBuilt for the quantum computing community.\r\n\r\nSpecial thanks to early adopters and contributors!\r\n\r\n---\r\n\r\n## \ud83d\uddfa\ufe0f Roadmap\r\n\r\nSee our [public roadmap](https://github.com/users/tony-siqurity-ai/projects/1) for upcoming features and Cloud API development.\r\n\r\nWant to influence what we build? [Open a discussion](https://github.com/tony-siqurity-ai/quantiq-web/discussions)!\r\n\r\n---\r\n\r\n<div align=\"center\">\r\n\r\n**\u2b50 Star us on GitHub if you find quantIQ useful!**\r\n\r\nMade with \u269b\ufe0f by the quantIQ team\r\n\r\n[Get Started](https://quantiq.dev/docs) \u2022 [GitHub](https://github.com/tony-siqurity-ai/quantiq-web) \u2022 [PyPI](https://pypi.org/project/quantiq/)\r\n\r\n</div>\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Quantum computing with intelligence - learn, build, deploy",
"version": "1.2.2",
"project_urls": {
"Blog": "https://quantiq.dev/blog",
"Changelog": "https://github.com/tony-siqurity-ai/quantiq/blob/main/CHANGELOG.md",
"Documentation": "https://quantiq.dev/docs",
"Homepage": "https://quantiq.dev",
"Repository": "https://github.com/tony-siqurity-ai/quantiq"
},
"split_keywords": [
"quantum",
" quantum-computing",
" simulator",
" qubits",
" education",
" learning"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "2a50dd02c4556ce73a4df1c2ca78ca7d9cc8a3b19105a2fabef726a5f098b357",
"md5": "68836832396402052f52e7d980121b7a",
"sha256": "2f822065bcc53662cbd51f62fb61b6463fdf40a15ba47374c9cdfd0e5761a810"
},
"downloads": -1,
"filename": "quantiq_dev-1.2.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "68836832396402052f52e7d980121b7a",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11",
"size": 12976,
"upload_time": "2025-10-10T23:46:58",
"upload_time_iso_8601": "2025-10-10T23:46:58.874646Z",
"url": "https://files.pythonhosted.org/packages/2a/50/dd02c4556ce73a4df1c2ca78ca7d9cc8a3b19105a2fabef726a5f098b357/quantiq_dev-1.2.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "3b5b155f5673f86ecb40c843cee1aa2f22d6f758f2cc83ee2d25e664c045c1af",
"md5": "d42e33d2e123cbedf0ff9223687cc075",
"sha256": "bd1b101a5a571fa4b5ee4d00595ddc1a8be20d15853e7817a1e558f9fcd8027e"
},
"downloads": -1,
"filename": "quantiq_dev-1.2.2.tar.gz",
"has_sig": false,
"md5_digest": "d42e33d2e123cbedf0ff9223687cc075",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.11",
"size": 14264,
"upload_time": "2025-10-10T23:46:59",
"upload_time_iso_8601": "2025-10-10T23:46:59.998354Z",
"url": "https://files.pythonhosted.org/packages/3b/5b/155f5673f86ecb40c843cee1aa2f22d6f758f2cc83ee2d25e664c045c1af/quantiq_dev-1.2.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-10 23:46:59",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "tony-siqurity-ai",
"github_project": "quantiq",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "quantiq-dev"
}