# Quant ML Lib
Quant ML Lib is a Python package for financial machine learning, providing reproducible, interpretable, and easy-to-use tools for portfolio managers and traders.
## Features
- Peer-reviewed algorithms from top financial journals
- Techniques from leading authors in financial machine learning
- Extensive documentation and tutorials
- Community support and sponsorship model
## Installation
Install Quant ML Lib using pip:
```bash
pip install quantmllib
```
## Usage
Import Quant ML Lib in your Python code:
```python
import quantmllib
```
Refer to the [documentation](https://danchev.github.io/quantmllib/) for detailed examples and API reference.
## Documentation & Tutorials
- [Online Documentation](https://danchev.github.io/quantmllib/)
- [Tutorial Notebooks](https://github.com/danchev/quantmllib-research)
## Contributing
Contributions are welcome! Please see our [contributing guidelines](https://github.com/danchev/quantmllib/blob/master/CONTRIBUTING.md) for details.
## License
This project is licensed under an all rights reserved license. See [LICENSE.txt](https://github.com/danchev/quantmllib/blob/master/LICENSE.txt) for details.
## Attribution
This project is a fork of the MLFInLab library, a comprehensive framework for financial machine learning. Our objective is to build upon its foundation, with a renewed emphasis on reproducibility and interpretability in the development and application of financial ML methodologies.
Raw data
{
"_id": null,
"home_page": null,
"name": "quantmllib",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.11",
"maintainer_email": null,
"keywords": "machinelearning, finance, investment, education",
"author": "D. Danchev",
"author_email": "D. Danchev <12420863+danchev@users.noreply.github.com>",
"download_url": "https://files.pythonhosted.org/packages/d6/d1/aa5c2f8f36300e273309bef3540caad4141bcc15cffb0f8c3f720472a5ab/quantmllib-0.0.1.dev0.tar.gz",
"platform": null,
"description": "# Quant ML Lib\n\nQuant ML Lib is a Python package for financial machine learning, providing reproducible, interpretable, and easy-to-use tools for portfolio managers and traders.\n\n## Features\n- Peer-reviewed algorithms from top financial journals\n- Techniques from leading authors in financial machine learning\n- Extensive documentation and tutorials\n- Community support and sponsorship model\n\n## Installation\nInstall Quant ML Lib using pip:\n\n```bash\npip install quantmllib\n```\n\n## Usage\nImport Quant ML Lib in your Python code:\n\n```python\nimport quantmllib\n```\n\nRefer to the [documentation](https://danchev.github.io/quantmllib/) for detailed examples and API reference.\n\n## Documentation & Tutorials\n- [Online Documentation](https://danchev.github.io/quantmllib/)\n- [Tutorial Notebooks](https://github.com/danchev/quantmllib-research)\n\n## Contributing\nContributions are welcome! Please see our [contributing guidelines](https://github.com/danchev/quantmllib/blob/master/CONTRIBUTING.md) for details.\n\n## License\nThis project is licensed under an all rights reserved license. See [LICENSE.txt](https://github.com/danchev/quantmllib/blob/master/LICENSE.txt) for details.\n\n## Attribution\nThis project is a fork of the MLFInLab library, a comprehensive framework for financial machine learning. Our objective is to build upon its foundation, with a renewed emphasis on reproducibility and interpretability in the development and application of financial ML methodologies.\n",
"bugtrack_url": null,
"license": "AGPL-3.0-or-later",
"summary": "Quant ML Lib helps portfolio managers and traders who want to leverage the power of machine learning by providing reproducible, interpretable, and easy to use tools.",
"version": "0.0.1.dev0",
"project_urls": {
"Bug Reports": "https://github.com/danchev/quantmllib/issues",
"Documentation": "https://danchev.github.io/quantmllib/",
"Project Boards": "https://github.com/danchev/projects",
"Source": "https://github.com/danchev/quantmllib"
},
"split_keywords": [
"machinelearning",
" finance",
" investment",
" education"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "9d97ab1f54162d1bdaf0c9564e717ec2adf4201f289269342e27c3cd3c7610e4",
"md5": "8fd0c62e08951f6976cd748b5461688b",
"sha256": "60d27a07e693eb67fb9e33461155e41cfeec543443630c575dd41f53fad073ea"
},
"downloads": -1,
"filename": "quantmllib-0.0.1.dev0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "8fd0c62e08951f6976cd748b5461688b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11",
"size": 548052,
"upload_time": "2025-07-27T00:06:37",
"upload_time_iso_8601": "2025-07-27T00:06:37.904995Z",
"url": "https://files.pythonhosted.org/packages/9d/97/ab1f54162d1bdaf0c9564e717ec2adf4201f289269342e27c3cd3c7610e4/quantmllib-0.0.1.dev0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d6d1aa5c2f8f36300e273309bef3540caad4141bcc15cffb0f8c3f720472a5ab",
"md5": "f19f6fa6bcf6b27fa15571b6d53b5095",
"sha256": "aa1cb30f50183bba4a411da8d71f61bb49494280e1cc9a5041e4fcce78c46d09"
},
"downloads": -1,
"filename": "quantmllib-0.0.1.dev0.tar.gz",
"has_sig": false,
"md5_digest": "f19f6fa6bcf6b27fa15571b6d53b5095",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.11",
"size": 459878,
"upload_time": "2025-07-27T00:06:39",
"upload_time_iso_8601": "2025-07-27T00:06:39.677939Z",
"url": "https://files.pythonhosted.org/packages/d6/d1/aa5c2f8f36300e273309bef3540caad4141bcc15cffb0f8c3f720472a5ab/quantmllib-0.0.1.dev0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-27 00:06:39",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "danchev",
"github_project": "quantmllib",
"github_not_found": true,
"lcname": "quantmllib"
}