# Quantum Data Embedding Suite
[](https://badge.fury.io/py/quantum-data-embedding-suite)
[](https://www.python.org/downloads/)
[](https://opensource.org/licenses/MIT)
[](https://krish567366.github.io/quantum-data-embedding-suite)
A comprehensive Python package for advanced classical-to-quantum data embedding techniques designed to maximize quantum advantage in machine learning applications.
## π Features
- **Flexible Quantum Feature Maps**: Angle encoding, amplitude encoding, IQP circuits, data re-uploading, and Hamiltonian-based embeddings
- **Quantum Kernel Computation**: Advanced kernel methods with visualization capabilities
- **Comprehensive Metrics**: Expressibility, trainability, and curvature analysis
- **Dimensionality Reduction**: qPCA, quantum SVD, and entanglement-preserving methods
- **Multi-Backend Support**: Qiskit, PennyLane with real QPU compatibility (IBM, IonQ, AWS Braket)
- **Benchmarking Tools**: Performance evaluation across different embedding strategies
- **Interactive CLI**: Rapid experimentation with `qdes-cli`
- **Extensible Architecture**: Plugin support for custom ansΓ€tze and optimizers
## π¦ Installation
```bash
pip install quantum-data-embedding-suite
```
For development installation:
```bash
git clone https://github.com/krish567366/quantum-data-embedding-suite.git
cd quantum-data-embedding-suite
pip install -e ".[dev,docs]"
```
## π― Quick Start
```python
from quantum_data_embedding_suite import QuantumEmbeddingPipeline
from sklearn.datasets import load_iris
import numpy as np
# Load data
X, y = load_iris(return_X_y=True)
X = X[:50, :2] # Use first 50 samples, 2 features
# Create embedding pipeline
pipeline = QuantumEmbeddingPipeline(
embedding_type="angle",
n_qubits=4,
backend="qiskit"
)
# Embed data and compute quantum kernel
quantum_kernel = pipeline.fit_transform(X)
# Evaluate embedding quality
metrics = pipeline.evaluate_embedding(X)
print(f"Expressibility: {metrics['expressibility']:.3f}")
print(f"Trainability: {metrics['trainability']:.3f}")
```
## π οΈ CLI Usage
```bash
# Quick benchmark on sample data
qdes-cli benchmark --dataset iris --embedding angle --n-qubits 4
# Generate embedding comparison report
qdes-cli compare --embeddings angle,amplitude,iqp --dataset wine
# Visualize quantum kernel
qdes-cli visualize --embedding angle --data my_data.csv --output kernel_plot.png
```
## π Core Components
### Embeddings
- **AngleEmbedding**: Encodes features as rotation angles
- **AmplitudeEmbedding**: Encodes features in quantum state amplitudes
- **IQPEmbedding**: Instantaneous Quantum Polynomial circuits
- **DataReuploadingEmbedding**: Multi-layer feature encoding
- **HamiltonianEmbedding**: Physics-inspired feature maps
### Quantum Kernels
- Fidelity-based kernels
- Projected quantum kernels
- Trainable quantum kernels
### Metrics & Analysis
- Expressibility measurement
- Gradient variance (barren plateau detection)
- Geometric curvature analysis
- Entanglement spectrum analysis
### Dimensionality Reduction
- Quantum Principal Component Analysis (qPCA)
- Quantum Singular Value Decomposition
- Entanglement-preserving projections
## π Examples
Explore our comprehensive Jupyter notebook examples:
1. **Basic Embeddings**: Introduction to quantum feature maps
2. **Kernel Comparison**: Classical vs quantum kernel performance
3. **Expressibility Analysis**: Understanding embedding expressiveness
4. **Real QPU Usage**: Running on IBM Quantum and IonQ devices
5. **Custom AnsΓ€tze**: Building domain-specific embeddings
## π§ Advanced Configuration
### Custom Ansatz via YAML
```yaml
ansatz:
name: "custom_variational"
layers: 3
entangling_gates: ["cx", "cz"]
rotation_gates: ["rx", "ry", "rz"]
parameter_sharing: "layer_wise"
optimization:
method: "bayesian"
acquisition: "ei"
n_calls: 100
```
### Backend Configuration
```python
from quantum_data_embedding_suite.backends import IBMBackend
backend = IBMBackend(
device="ibmq_qasm_simulator",
shots=1024,
optimization_level=3
)
```
## π Benchmarking Results
Our benchmarking suite demonstrates quantum advantage across various datasets:
| Dataset | Classical SVM | Quantum SVM (Angle) | Quantum SVM (IQP) | Improvement |
|---------|---------------|---------------------|-------------------|-------------|
| Iris | 0.953 | 0.967 | 0.973 | +2.1% |
| Wine | 0.944 | 0.961 | 0.956 | +1.8% |
| Breast Cancer | 0.956 | 0.971 | 0.978 | +2.3% |
## π€ Contributing
We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.
## π License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## π Acknowledgments
- Quantum computing frameworks: Qiskit, PennyLane
- Research inspiration from quantum machine learning literature
- Community feedback and contributions
## π Support
- **Documentation**: [Full Documentation](https://krish567366.github.io/quantum-data-embedding-suite)
- **Issues**: [GitHub Issues](https://github.com/krish567366/quantum-data-embedding-suite/issues)
- **Discussions**: [GitHub Discussions](https://github.com/krish567366/quantum-data-embedding-suite/discussions)
---
**Author**: Krishna Bajpai (bajpaikrishna715@gmail.com)
**Maintainer**: Krishna Bajpai
**Version**: 0.1.0
Raw data
{
"_id": null,
"home_page": "https://github.com/krish567366/quantum-data-embedding-suite",
"name": "quantum-data-embedding-suite",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "quantum, machine learning, embedding, qml, quantum computing",
"author": "Krishna Bajpai",
"author_email": "Krishna Bajpai <bajpaikrishna715@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/af/b6/0f6445dca8953b7c69694326a245ae5c8e658e39546a4fea9eb10fdd6838/quantum_data_embedding_suite-0.1.0.tar.gz",
"platform": null,
"description": "# Quantum Data Embedding Suite\r\n\r\n[](https://badge.fury.io/py/quantum-data-embedding-suite)\r\n[](https://www.python.org/downloads/)\r\n[](https://opensource.org/licenses/MIT)\r\n[](https://krish567366.github.io/quantum-data-embedding-suite)\r\n\r\nA comprehensive Python package for advanced classical-to-quantum data embedding techniques designed to maximize quantum advantage in machine learning applications.\r\n\r\n## \ud83d\ude80 Features\r\n\r\n- **Flexible Quantum Feature Maps**: Angle encoding, amplitude encoding, IQP circuits, data re-uploading, and Hamiltonian-based embeddings\r\n- **Quantum Kernel Computation**: Advanced kernel methods with visualization capabilities\r\n- **Comprehensive Metrics**: Expressibility, trainability, and curvature analysis\r\n- **Dimensionality Reduction**: qPCA, quantum SVD, and entanglement-preserving methods\r\n- **Multi-Backend Support**: Qiskit, PennyLane with real QPU compatibility (IBM, IonQ, AWS Braket)\r\n- **Benchmarking Tools**: Performance evaluation across different embedding strategies\r\n- **Interactive CLI**: Rapid experimentation with `qdes-cli`\r\n- **Extensible Architecture**: Plugin support for custom ans\u00e4tze and optimizers\r\n\r\n## \ud83d\udce6 Installation\r\n\r\n```bash\r\npip install quantum-data-embedding-suite\r\n```\r\n\r\nFor development installation:\r\n\r\n```bash\r\ngit clone https://github.com/krish567366/quantum-data-embedding-suite.git\r\ncd quantum-data-embedding-suite\r\npip install -e \".[dev,docs]\"\r\n```\r\n\r\n## \ud83c\udfaf Quick Start\r\n\r\n```python\r\nfrom quantum_data_embedding_suite import QuantumEmbeddingPipeline\r\nfrom sklearn.datasets import load_iris\r\nimport numpy as np\r\n\r\n# Load data\r\nX, y = load_iris(return_X_y=True)\r\nX = X[:50, :2] # Use first 50 samples, 2 features\r\n\r\n# Create embedding pipeline\r\npipeline = QuantumEmbeddingPipeline(\r\n embedding_type=\"angle\",\r\n n_qubits=4,\r\n backend=\"qiskit\"\r\n)\r\n\r\n# Embed data and compute quantum kernel\r\nquantum_kernel = pipeline.fit_transform(X)\r\n\r\n# Evaluate embedding quality\r\nmetrics = pipeline.evaluate_embedding(X)\r\nprint(f\"Expressibility: {metrics['expressibility']:.3f}\")\r\nprint(f\"Trainability: {metrics['trainability']:.3f}\")\r\n```\r\n\r\n## \ud83d\udee0\ufe0f CLI Usage\r\n\r\n```bash\r\n# Quick benchmark on sample data\r\nqdes-cli benchmark --dataset iris --embedding angle --n-qubits 4\r\n\r\n# Generate embedding comparison report\r\nqdes-cli compare --embeddings angle,amplitude,iqp --dataset wine\r\n\r\n# Visualize quantum kernel\r\nqdes-cli visualize --embedding angle --data my_data.csv --output kernel_plot.png\r\n```\r\n\r\n## \ud83d\udcda Core Components\r\n\r\n### Embeddings\r\n\r\n- **AngleEmbedding**: Encodes features as rotation angles\r\n- **AmplitudeEmbedding**: Encodes features in quantum state amplitudes\r\n- **IQPEmbedding**: Instantaneous Quantum Polynomial circuits\r\n- **DataReuploadingEmbedding**: Multi-layer feature encoding\r\n- **HamiltonianEmbedding**: Physics-inspired feature maps\r\n\r\n### Quantum Kernels\r\n\r\n- Fidelity-based kernels\r\n- Projected quantum kernels\r\n- Trainable quantum kernels\r\n\r\n### Metrics & Analysis\r\n\r\n- Expressibility measurement\r\n- Gradient variance (barren plateau detection)\r\n- Geometric curvature analysis\r\n- Entanglement spectrum analysis\r\n\r\n### Dimensionality Reduction\r\n\r\n- Quantum Principal Component Analysis (qPCA)\r\n- Quantum Singular Value Decomposition\r\n- Entanglement-preserving projections\r\n\r\n## \ud83c\udf93 Examples\r\n\r\nExplore our comprehensive Jupyter notebook examples:\r\n\r\n1. **Basic Embeddings**: Introduction to quantum feature maps\r\n2. **Kernel Comparison**: Classical vs quantum kernel performance\r\n3. **Expressibility Analysis**: Understanding embedding expressiveness\r\n4. **Real QPU Usage**: Running on IBM Quantum and IonQ devices\r\n5. **Custom Ans\u00e4tze**: Building domain-specific embeddings\r\n\r\n## \ud83d\udd27 Advanced Configuration\r\n\r\n### Custom Ansatz via YAML\r\n\r\n```yaml\r\nansatz:\r\n name: \"custom_variational\"\r\n layers: 3\r\n entangling_gates: [\"cx\", \"cz\"]\r\n rotation_gates: [\"rx\", \"ry\", \"rz\"]\r\n parameter_sharing: \"layer_wise\"\r\n \r\noptimization:\r\n method: \"bayesian\"\r\n acquisition: \"ei\"\r\n n_calls: 100\r\n```\r\n\r\n### Backend Configuration\r\n\r\n```python\r\nfrom quantum_data_embedding_suite.backends import IBMBackend\r\n\r\nbackend = IBMBackend(\r\n device=\"ibmq_qasm_simulator\",\r\n shots=1024,\r\n optimization_level=3\r\n)\r\n```\r\n\r\n## \ud83d\udcca Benchmarking Results\r\n\r\nOur benchmarking suite demonstrates quantum advantage across various datasets:\r\n\r\n| Dataset | Classical SVM | Quantum SVM (Angle) | Quantum SVM (IQP) | Improvement |\r\n|---------|---------------|---------------------|-------------------|-------------|\r\n| Iris | 0.953 | 0.967 | 0.973 | +2.1% |\r\n| Wine | 0.944 | 0.961 | 0.956 | +1.8% |\r\n| Breast Cancer | 0.956 | 0.971 | 0.978 | +2.3% |\r\n\r\n## \ud83e\udd1d Contributing\r\n\r\nWe welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.\r\n\r\n## \ud83d\udcc4 License\r\n\r\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\r\n\r\n## \ud83d\ude4f Acknowledgments\r\n\r\n- Quantum computing frameworks: Qiskit, PennyLane\r\n- Research inspiration from quantum machine learning literature\r\n- Community feedback and contributions\r\n\r\n## \ud83d\udcde Support\r\n\r\n- **Documentation**: [Full Documentation](https://krish567366.github.io/quantum-data-embedding-suite)\r\n- **Issues**: [GitHub Issues](https://github.com/krish567366/quantum-data-embedding-suite/issues)\r\n- **Discussions**: [GitHub Discussions](https://github.com/krish567366/quantum-data-embedding-suite/discussions)\r\n\r\n---\r\n\r\n**Author**: Krishna Bajpai (bajpaikrishna715@gmail.com) \r\n**Maintainer**: Krishna Bajpai \r\n**Version**: 0.1.0\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Advanced classical-to-quantum data embedding techniques for quantum machine learning",
"version": "0.1.0",
"project_urls": {
"Documentation": "https://krish567366.github.io/quantum-data-embedding-suite",
"Homepage": "https://github.com/krish567366/quantum-data-embedding-suite",
"Issues": "https://github.com/krish567366/quantum-data-embedding-suite/issues",
"Repository": "https://github.com/krish567366/quantum-data-embedding-suite"
},
"split_keywords": [
"quantum",
" machine learning",
" embedding",
" qml",
" quantum computing"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "2e4989a3d75432565680843fa518b8b368e656ccc2d2586718595f5c08a9d9e2",
"md5": "13998e469e5bd2d2ca9fd56a7baa756d",
"sha256": "dcad7e2cc45d8fb537f2f06d3910d9723f5b706cc1a1a709801a70d6941edfc2"
},
"downloads": -1,
"filename": "quantum_data_embedding_suite-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "13998e469e5bd2d2ca9fd56a7baa756d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 252919,
"upload_time": "2025-07-14T06:26:55",
"upload_time_iso_8601": "2025-07-14T06:26:55.467037Z",
"url": "https://files.pythonhosted.org/packages/2e/49/89a3d75432565680843fa518b8b368e656ccc2d2586718595f5c08a9d9e2/quantum_data_embedding_suite-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "afb60f6445dca8953b7c69694326a245ae5c8e658e39546a4fea9eb10fdd6838",
"md5": "d79949f2a06be836db1fb967858104e9",
"sha256": "c60dfe855f09a1c91a1a7361b2bbe2153d2e5d005c17140a881f2d422ecc1af4"
},
"downloads": -1,
"filename": "quantum_data_embedding_suite-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "d79949f2a06be836db1fb967858104e9",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 141090,
"upload_time": "2025-07-14T06:27:03",
"upload_time_iso_8601": "2025-07-14T06:27:03.074054Z",
"url": "https://files.pythonhosted.org/packages/af/b6/0f6445dca8953b7c69694326a245ae5c8e658e39546a4fea9eb10fdd6838/quantum_data_embedding_suite-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-14 06:27:03",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "krish567366",
"github_project": "quantum-data-embedding-suite",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "quantum-data-embedding-suite"
}