quantum-data-embedding-suite


Namequantum-data-embedding-suite JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/krish567366/quantum-data-embedding-suite
SummaryAdvanced classical-to-quantum data embedding techniques for quantum machine learning
upload_time2025-07-14 06:27:03
maintainerNone
docs_urlNone
authorKrishna Bajpai
requires_python>=3.8
licenseMIT
keywords quantum machine learning embedding qml quantum computing
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Quantum Data Embedding Suite

[![PyPI version](https://badge.fury.io/py/quantum-data-embedding-suite.svg)](https://badge.fury.io/py/quantum-data-embedding-suite)
[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Documentation](https://img.shields.io/badge/docs-mkdocs-blue.svg)](https://krish567366.github.io/quantum-data-embedding-suite)

A comprehensive Python package for advanced classical-to-quantum data embedding techniques designed to maximize quantum advantage in machine learning applications.

## πŸš€ Features

- **Flexible Quantum Feature Maps**: Angle encoding, amplitude encoding, IQP circuits, data re-uploading, and Hamiltonian-based embeddings
- **Quantum Kernel Computation**: Advanced kernel methods with visualization capabilities
- **Comprehensive Metrics**: Expressibility, trainability, and curvature analysis
- **Dimensionality Reduction**: qPCA, quantum SVD, and entanglement-preserving methods
- **Multi-Backend Support**: Qiskit, PennyLane with real QPU compatibility (IBM, IonQ, AWS Braket)
- **Benchmarking Tools**: Performance evaluation across different embedding strategies
- **Interactive CLI**: Rapid experimentation with `qdes-cli`
- **Extensible Architecture**: Plugin support for custom ansΓ€tze and optimizers

## πŸ“¦ Installation

```bash
pip install quantum-data-embedding-suite
```

For development installation:

```bash
git clone https://github.com/krish567366/quantum-data-embedding-suite.git
cd quantum-data-embedding-suite
pip install -e ".[dev,docs]"
```

## 🎯 Quick Start

```python
from quantum_data_embedding_suite import QuantumEmbeddingPipeline
from sklearn.datasets import load_iris
import numpy as np

# Load data
X, y = load_iris(return_X_y=True)
X = X[:50, :2]  # Use first 50 samples, 2 features

# Create embedding pipeline
pipeline = QuantumEmbeddingPipeline(
    embedding_type="angle",
    n_qubits=4,
    backend="qiskit"
)

# Embed data and compute quantum kernel
quantum_kernel = pipeline.fit_transform(X)

# Evaluate embedding quality
metrics = pipeline.evaluate_embedding(X)
print(f"Expressibility: {metrics['expressibility']:.3f}")
print(f"Trainability: {metrics['trainability']:.3f}")
```

## πŸ› οΈ CLI Usage

```bash
# Quick benchmark on sample data
qdes-cli benchmark --dataset iris --embedding angle --n-qubits 4

# Generate embedding comparison report
qdes-cli compare --embeddings angle,amplitude,iqp --dataset wine

# Visualize quantum kernel
qdes-cli visualize --embedding angle --data my_data.csv --output kernel_plot.png
```

## πŸ“š Core Components

### Embeddings

- **AngleEmbedding**: Encodes features as rotation angles
- **AmplitudeEmbedding**: Encodes features in quantum state amplitudes
- **IQPEmbedding**: Instantaneous Quantum Polynomial circuits
- **DataReuploadingEmbedding**: Multi-layer feature encoding
- **HamiltonianEmbedding**: Physics-inspired feature maps

### Quantum Kernels

- Fidelity-based kernels
- Projected quantum kernels
- Trainable quantum kernels

### Metrics & Analysis

- Expressibility measurement
- Gradient variance (barren plateau detection)
- Geometric curvature analysis
- Entanglement spectrum analysis

### Dimensionality Reduction

- Quantum Principal Component Analysis (qPCA)
- Quantum Singular Value Decomposition
- Entanglement-preserving projections

## πŸŽ“ Examples

Explore our comprehensive Jupyter notebook examples:

1. **Basic Embeddings**: Introduction to quantum feature maps
2. **Kernel Comparison**: Classical vs quantum kernel performance
3. **Expressibility Analysis**: Understanding embedding expressiveness
4. **Real QPU Usage**: Running on IBM Quantum and IonQ devices
5. **Custom AnsΓ€tze**: Building domain-specific embeddings

## πŸ”§ Advanced Configuration

### Custom Ansatz via YAML

```yaml
ansatz:
  name: "custom_variational"
  layers: 3
  entangling_gates: ["cx", "cz"]
  rotation_gates: ["rx", "ry", "rz"]
  parameter_sharing: "layer_wise"
  
optimization:
  method: "bayesian"
  acquisition: "ei"
  n_calls: 100
```

### Backend Configuration

```python
from quantum_data_embedding_suite.backends import IBMBackend

backend = IBMBackend(
    device="ibmq_qasm_simulator",
    shots=1024,
    optimization_level=3
)
```

## πŸ“Š Benchmarking Results

Our benchmarking suite demonstrates quantum advantage across various datasets:

| Dataset | Classical SVM | Quantum SVM (Angle) | Quantum SVM (IQP) | Improvement |
|---------|---------------|---------------------|-------------------|-------------|
| Iris    | 0.953        | 0.967              | 0.973            | +2.1%       |
| Wine    | 0.944        | 0.961              | 0.956            | +1.8%       |
| Breast Cancer | 0.956   | 0.971              | 0.978            | +2.3%       |

## 🀝 Contributing

We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.

## πŸ“„ License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## πŸ™ Acknowledgments

- Quantum computing frameworks: Qiskit, PennyLane
- Research inspiration from quantum machine learning literature
- Community feedback and contributions

## πŸ“ž Support

- **Documentation**: [Full Documentation](https://krish567366.github.io/quantum-data-embedding-suite)
- **Issues**: [GitHub Issues](https://github.com/krish567366/quantum-data-embedding-suite/issues)
- **Discussions**: [GitHub Discussions](https://github.com/krish567366/quantum-data-embedding-suite/discussions)

---

**Author**: Krishna Bajpai (bajpaikrishna715@gmail.com)  
**Maintainer**: Krishna Bajpai  
**Version**: 0.1.0

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/krish567366/quantum-data-embedding-suite",
    "name": "quantum-data-embedding-suite",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "quantum, machine learning, embedding, qml, quantum computing",
    "author": "Krishna Bajpai",
    "author_email": "Krishna Bajpai <bajpaikrishna715@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/af/b6/0f6445dca8953b7c69694326a245ae5c8e658e39546a4fea9eb10fdd6838/quantum_data_embedding_suite-0.1.0.tar.gz",
    "platform": null,
    "description": "# Quantum Data Embedding Suite\r\n\r\n[![PyPI version](https://badge.fury.io/py/quantum-data-embedding-suite.svg)](https://badge.fury.io/py/quantum-data-embedding-suite)\r\n[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)\r\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\r\n[![Documentation](https://img.shields.io/badge/docs-mkdocs-blue.svg)](https://krish567366.github.io/quantum-data-embedding-suite)\r\n\r\nA comprehensive Python package for advanced classical-to-quantum data embedding techniques designed to maximize quantum advantage in machine learning applications.\r\n\r\n## \ud83d\ude80 Features\r\n\r\n- **Flexible Quantum Feature Maps**: Angle encoding, amplitude encoding, IQP circuits, data re-uploading, and Hamiltonian-based embeddings\r\n- **Quantum Kernel Computation**: Advanced kernel methods with visualization capabilities\r\n- **Comprehensive Metrics**: Expressibility, trainability, and curvature analysis\r\n- **Dimensionality Reduction**: qPCA, quantum SVD, and entanglement-preserving methods\r\n- **Multi-Backend Support**: Qiskit, PennyLane with real QPU compatibility (IBM, IonQ, AWS Braket)\r\n- **Benchmarking Tools**: Performance evaluation across different embedding strategies\r\n- **Interactive CLI**: Rapid experimentation with `qdes-cli`\r\n- **Extensible Architecture**: Plugin support for custom ans\u00e4tze and optimizers\r\n\r\n## \ud83d\udce6 Installation\r\n\r\n```bash\r\npip install quantum-data-embedding-suite\r\n```\r\n\r\nFor development installation:\r\n\r\n```bash\r\ngit clone https://github.com/krish567366/quantum-data-embedding-suite.git\r\ncd quantum-data-embedding-suite\r\npip install -e \".[dev,docs]\"\r\n```\r\n\r\n## \ud83c\udfaf Quick Start\r\n\r\n```python\r\nfrom quantum_data_embedding_suite import QuantumEmbeddingPipeline\r\nfrom sklearn.datasets import load_iris\r\nimport numpy as np\r\n\r\n# Load data\r\nX, y = load_iris(return_X_y=True)\r\nX = X[:50, :2]  # Use first 50 samples, 2 features\r\n\r\n# Create embedding pipeline\r\npipeline = QuantumEmbeddingPipeline(\r\n    embedding_type=\"angle\",\r\n    n_qubits=4,\r\n    backend=\"qiskit\"\r\n)\r\n\r\n# Embed data and compute quantum kernel\r\nquantum_kernel = pipeline.fit_transform(X)\r\n\r\n# Evaluate embedding quality\r\nmetrics = pipeline.evaluate_embedding(X)\r\nprint(f\"Expressibility: {metrics['expressibility']:.3f}\")\r\nprint(f\"Trainability: {metrics['trainability']:.3f}\")\r\n```\r\n\r\n## \ud83d\udee0\ufe0f CLI Usage\r\n\r\n```bash\r\n# Quick benchmark on sample data\r\nqdes-cli benchmark --dataset iris --embedding angle --n-qubits 4\r\n\r\n# Generate embedding comparison report\r\nqdes-cli compare --embeddings angle,amplitude,iqp --dataset wine\r\n\r\n# Visualize quantum kernel\r\nqdes-cli visualize --embedding angle --data my_data.csv --output kernel_plot.png\r\n```\r\n\r\n## \ud83d\udcda Core Components\r\n\r\n### Embeddings\r\n\r\n- **AngleEmbedding**: Encodes features as rotation angles\r\n- **AmplitudeEmbedding**: Encodes features in quantum state amplitudes\r\n- **IQPEmbedding**: Instantaneous Quantum Polynomial circuits\r\n- **DataReuploadingEmbedding**: Multi-layer feature encoding\r\n- **HamiltonianEmbedding**: Physics-inspired feature maps\r\n\r\n### Quantum Kernels\r\n\r\n- Fidelity-based kernels\r\n- Projected quantum kernels\r\n- Trainable quantum kernels\r\n\r\n### Metrics & Analysis\r\n\r\n- Expressibility measurement\r\n- Gradient variance (barren plateau detection)\r\n- Geometric curvature analysis\r\n- Entanglement spectrum analysis\r\n\r\n### Dimensionality Reduction\r\n\r\n- Quantum Principal Component Analysis (qPCA)\r\n- Quantum Singular Value Decomposition\r\n- Entanglement-preserving projections\r\n\r\n## \ud83c\udf93 Examples\r\n\r\nExplore our comprehensive Jupyter notebook examples:\r\n\r\n1. **Basic Embeddings**: Introduction to quantum feature maps\r\n2. **Kernel Comparison**: Classical vs quantum kernel performance\r\n3. **Expressibility Analysis**: Understanding embedding expressiveness\r\n4. **Real QPU Usage**: Running on IBM Quantum and IonQ devices\r\n5. **Custom Ans\u00e4tze**: Building domain-specific embeddings\r\n\r\n## \ud83d\udd27 Advanced Configuration\r\n\r\n### Custom Ansatz via YAML\r\n\r\n```yaml\r\nansatz:\r\n  name: \"custom_variational\"\r\n  layers: 3\r\n  entangling_gates: [\"cx\", \"cz\"]\r\n  rotation_gates: [\"rx\", \"ry\", \"rz\"]\r\n  parameter_sharing: \"layer_wise\"\r\n  \r\noptimization:\r\n  method: \"bayesian\"\r\n  acquisition: \"ei\"\r\n  n_calls: 100\r\n```\r\n\r\n### Backend Configuration\r\n\r\n```python\r\nfrom quantum_data_embedding_suite.backends import IBMBackend\r\n\r\nbackend = IBMBackend(\r\n    device=\"ibmq_qasm_simulator\",\r\n    shots=1024,\r\n    optimization_level=3\r\n)\r\n```\r\n\r\n## \ud83d\udcca Benchmarking Results\r\n\r\nOur benchmarking suite demonstrates quantum advantage across various datasets:\r\n\r\n| Dataset | Classical SVM | Quantum SVM (Angle) | Quantum SVM (IQP) | Improvement |\r\n|---------|---------------|---------------------|-------------------|-------------|\r\n| Iris    | 0.953        | 0.967              | 0.973            | +2.1%       |\r\n| Wine    | 0.944        | 0.961              | 0.956            | +1.8%       |\r\n| Breast Cancer | 0.956   | 0.971              | 0.978            | +2.3%       |\r\n\r\n## \ud83e\udd1d Contributing\r\n\r\nWe welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.\r\n\r\n## \ud83d\udcc4 License\r\n\r\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\r\n\r\n## \ud83d\ude4f Acknowledgments\r\n\r\n- Quantum computing frameworks: Qiskit, PennyLane\r\n- Research inspiration from quantum machine learning literature\r\n- Community feedback and contributions\r\n\r\n## \ud83d\udcde Support\r\n\r\n- **Documentation**: [Full Documentation](https://krish567366.github.io/quantum-data-embedding-suite)\r\n- **Issues**: [GitHub Issues](https://github.com/krish567366/quantum-data-embedding-suite/issues)\r\n- **Discussions**: [GitHub Discussions](https://github.com/krish567366/quantum-data-embedding-suite/discussions)\r\n\r\n---\r\n\r\n**Author**: Krishna Bajpai (bajpaikrishna715@gmail.com)  \r\n**Maintainer**: Krishna Bajpai  \r\n**Version**: 0.1.0\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Advanced classical-to-quantum data embedding techniques for quantum machine learning",
    "version": "0.1.0",
    "project_urls": {
        "Documentation": "https://krish567366.github.io/quantum-data-embedding-suite",
        "Homepage": "https://github.com/krish567366/quantum-data-embedding-suite",
        "Issues": "https://github.com/krish567366/quantum-data-embedding-suite/issues",
        "Repository": "https://github.com/krish567366/quantum-data-embedding-suite"
    },
    "split_keywords": [
        "quantum",
        " machine learning",
        " embedding",
        " qml",
        " quantum computing"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "2e4989a3d75432565680843fa518b8b368e656ccc2d2586718595f5c08a9d9e2",
                "md5": "13998e469e5bd2d2ca9fd56a7baa756d",
                "sha256": "dcad7e2cc45d8fb537f2f06d3910d9723f5b706cc1a1a709801a70d6941edfc2"
            },
            "downloads": -1,
            "filename": "quantum_data_embedding_suite-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "13998e469e5bd2d2ca9fd56a7baa756d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 252919,
            "upload_time": "2025-07-14T06:26:55",
            "upload_time_iso_8601": "2025-07-14T06:26:55.467037Z",
            "url": "https://files.pythonhosted.org/packages/2e/49/89a3d75432565680843fa518b8b368e656ccc2d2586718595f5c08a9d9e2/quantum_data_embedding_suite-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "afb60f6445dca8953b7c69694326a245ae5c8e658e39546a4fea9eb10fdd6838",
                "md5": "d79949f2a06be836db1fb967858104e9",
                "sha256": "c60dfe855f09a1c91a1a7361b2bbe2153d2e5d005c17140a881f2d422ecc1af4"
            },
            "downloads": -1,
            "filename": "quantum_data_embedding_suite-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "d79949f2a06be836db1fb967858104e9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 141090,
            "upload_time": "2025-07-14T06:27:03",
            "upload_time_iso_8601": "2025-07-14T06:27:03.074054Z",
            "url": "https://files.pythonhosted.org/packages/af/b6/0f6445dca8953b7c69694326a245ae5c8e658e39546a4fea9eb10fdd6838/quantum_data_embedding_suite-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-14 06:27:03",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "krish567366",
    "github_project": "quantum-data-embedding-suite",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "quantum-data-embedding-suite"
}
        
Elapsed time: 0.46755s