quantum-docker-engine


Namequantum-docker-engine JSON
Version 1.0.2 PyPI version JSON
download
home_pagehttps://github.com/quantum-docker/engine
SummaryRevolutionary container orchestration engine powered by quantum computing
upload_time2025-09-06 03:56:51
maintainerNone
docs_urlNone
authorQuantum Docker Team
requires_python>=3.8
licenseNone
keywords quantum computing container orchestration docker kubernetes quantum algorithms
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Quantum Docker Engine

A revolutionary container orchestration engine that leverages quantum computing principles to optimize container scheduling, resource allocation, and inter-container communication.

## Features

- **Quantum Superposition**: Containers exist in multiple states simultaneously until measured
- **Quantum Entanglement**: Correlated container placement and instant communication
- **Quantum Load Balancing**: Optimal resource allocation using quantum algorithms
- **Quantum Networking**: Secure communication through quantum channels
- **Quantum Gates**: Fine-tune container behavior with quantum operations
- **Real-time Rebalancing**: Dynamic optimization based on quantum measurements

## How It Works

The Quantum Docker Engine applies quantum mechanical principles to container orchestration:

1. **Superposition**: Containers are created in quantum superposition, exploring multiple deployment states
2. **Entanglement**: Related containers are quantum entangled for correlated scheduling decisions
3. **Measurement**: Quantum measurement collapses container states to optimal configurations
4. **Interference**: Quantum interference patterns guide load balancing decisions
5. **Decoherence**: System maintains quantum coherence while preventing unwanted state collapse

## 🚀 Quick Start

### Prerequisites

- Python 3.8+
- Optional: Docker Desktop (not required for simulation)

### Install

```bash
pip install quantum-docker-engine
```

Optional extras:
- Qiskit integration (optional, heavy dependency)

```bash
pip install "quantum-docker-engine[qiskit]"
# or with pipx
pipx install "quantum-docker-engine[qiskit]"
```

### Use the CLI

```bash
# Start engine
qdocker start

# Create a container in quantum superposition
qdocker create nginx:alpine my-web --quantum-weight 2.0

# Inspect and operate
qdocker ps
qdocker measure my-web
qdocker run my-web
qdocker status
```

## Detailed Usage

### Engine Management

**Start the engine**:
```bash
qdocker start
```

**Stop the engine**:
```bash
qdocker stop
```

**Check engine status**:
```bash
qdocker status
```

### Container Operations

**Create a quantum container**:
```bash
qdocker create [OPTIONS] IMAGE NAME

Options:
  --quantum-weight FLOAT    Quantum weight for superposition (default: 1.0)
  --quantum-probability FLOAT  Measurement probability (default: 0.5)
  --states TEXT            Comma-separated superposition states (default: running,stopped)
  --cpu FLOAT             CPU requirement (default: 1.0)
  --memory INTEGER        Memory in MB (default: 512)
```

**Run a container (performs quantum measurement)**:
```bash
qdocker run CONTAINER_NAME
```

**Stop a container**:
```bash
qdocker stop-container CONTAINER_NAME
```

**Measure quantum state**:
```bash
qdocker measure CONTAINER_NAME
```

**Inspect container details**:
```bash
qdocker inspect CONTAINER_NAME
```

### Quantum Operations

**Create entanglement between containers**:
```bash
qdocker entangle CONTAINER1 CONTAINER2
```

**Apply quantum gates**:
```bash
qdocker apply-gate CONTAINER GATE_TYPE [--angle FLOAT]

Available gates: X, Z, RY
```

**Quantum load balancing**:
```bash
qdocker load-balance CONTAINER1 CONTAINER2 CONTAINER3
```

**Resource rebalancing**:
```bash
qdocker rebalance
```

### Cluster Management

**Create a quantum cluster** (from your own YAML file):
```bash
qdocker create-cluster path/to/your_cluster.yaml
```

**Send quantum messages**:
```bash
qdocker send-message SENDER RECEIVER MESSAGE_TYPE --data '{"key": "value"}'
```

### Maintenance

**Run maintenance cycle**:
```bash
qdocker maintenance
```

**Export quantum state**:
```bash
qdocker export-state --filename quantum_state.json
```

## Practical Use Cases

- Quantum load balancing across nodes using the built-in scheduler
- Entangled services for correlated placement decisions
- Hybrid workflows: mix measurements, gates, and rebalancing cycles

## Configuration

### Engine Configuration

Create a `quantum_engine.yaml` file:

```yaml
quantum_docker_config:
  num_qubits: 16
  simulation_backend: cirq
  max_containers: 50
  enable_quantum_networking: true
  enable_quantum_scheduling: true
  enable_quantum_load_balancing: true
  decoherence_time_ms: 1000.0
```

Use with:
```bash
qdocker start --config quantum_engine.yaml
```

### Cluster Configuration

Define quantum clusters in YAML:

```yaml
name: my-quantum-cluster
containers:
  - name: web-server
    image: nginx:alpine
    quantum_weight: 1.0
    quantum_probability: 0.8
    superposition_states: ["running", "stopped"]
    resource_requirements:
      cpu: 0.5
      memory: 512
```

## Quantum Concepts Explained

### Superposition
Containers exist in multiple states simultaneously, allowing the engine to explore all possible deployment configurations before measurement collapse.

### Entanglement
Related containers share quantum states, ensuring correlated placement decisions (e.g., web servers on different nodes for redundancy).

### Measurement
Quantum measurement collapses superposition states to determine final container placement and configuration.

### Decoherence
The system manages quantum decoherence to maintain optimal states while preventing unwanted state collapse.

### Quantum Gates
Apply quantum transformations to modify container placement probabilities:
- **X Gate**: Flip container state probabilities
- **Z Gate**: Apply phase shifts to states
- **RY Gate**: Rotate state probabilities by specified angle

## Development

For contributors: set up a virtualenv and install in editable mode.

```bash
git clone <repo>
cd QuantumDockerEngine
python -m venv .venv && source .venv/bin/activate
pip install -r requirements.txt
pip install -e .
```

## Advanced Features

### Custom Quantum Algorithms

Implement custom scheduling algorithms:

```python
from quantum_docker.quantum.circuit_manager import QuantumCircuitManager

class CustomQuantumScheduler:
    def __init__(self, circuit_manager):
        self.circuit_manager = circuit_manager
    
    def custom_allocation_algorithm(self, containers, nodes):
        # Implement your quantum algorithm
        pass
```

### Quantum Metrics

Monitor quantum system health:

```python
status = await engine.get_engine_status()
coherence = status['resources']['quantum_coherence']
entanglement = status['resources']['resource_entanglement']
```

### Hybrid Classical-Quantum Operations

Combine classical and quantum scheduling:

```python
# Quantum load balancing for critical containers
critical_containers = ["database", "api-server"]
quantum_allocation = await engine.quantum_load_balance(critical_containers)

# Classical scheduling for regular containers
regular_containers = ["worker-1", "worker-2"]
# Apply classical round-robin or other algorithms
```

## Troubleshooting

### Common Issues

**Engine won't start**:
- Check Docker is running
- Verify Python dependencies are installed
- Ensure sufficient system resources

**Quantum measurement fails**:
- Check quantum coherence levels
- Verify container is in superposition state
- Run maintenance cycle to refresh quantum states

**Entanglement creation fails**:
- Ensure both containers exist
- Check quantum networking is enabled
- Verify sufficient qubits available

**Performance issues**:
- Reduce number of qubits if running on limited hardware
- Disable quantum networking for faster simulation
- Increase decoherence time for more stable states

### Debug Mode

Enable verbose logging:

```bash
export QUANTUM_DOCKER_DEBUG=1
qdocker start
```

### Quantum State Inspection

Export and analyze quantum states:

```bash
qdocker export-state --filename debug_state.json
# Analyze the JSON file to understand quantum configurations
```

## Contributing

1. Fork the repository
2. Create a feature branch
3. Implement your quantum enhancement
4. Add tests for quantum behaviors
5. Submit a pull request

### Development Guidelines

- Follow quantum computing best practices
- Maintain quantum state consistency
- Add comprehensive tests for quantum operations
- Update documentation for new quantum features

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## Acknowledgments

- Google Cirq for quantum circuit simulation
- IBM Qiskit for quantum computing frameworks
- Docker for containerization technology
- The quantum computing community for inspiration

## Related Projects

- [Cirq](https://github.com/quantumlib/Cirq) - Google's quantum computing framework
- [Qiskit](https://github.com/Qiskit/qiskit) - IBM's quantum computing platform
- [Docker](https://github.com/docker/docker-ce) - Container platform

---

**Note**: This is a prototype demonstrating quantum computing concepts applied to container orchestration. While the quantum simulations are accurate, actual quantum hardware integration would require significant additional development.

*Made with quantum entanglement*

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/quantum-docker/engine",
    "name": "quantum-docker-engine",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "quantum computing, container orchestration, docker, kubernetes, quantum algorithms",
    "author": "Quantum Docker Team",
    "author_email": "contact@quantumdocker.io",
    "download_url": "https://files.pythonhosted.org/packages/ad/20/a848c8ff439d2382710940895af0b58e178b830e41970a5641da780ab5bb/quantum_docker_engine-1.0.2.tar.gz",
    "platform": null,
    "description": "# Quantum Docker Engine\n\nA revolutionary container orchestration engine that leverages quantum computing principles to optimize container scheduling, resource allocation, and inter-container communication.\n\n## Features\n\n- **Quantum Superposition**: Containers exist in multiple states simultaneously until measured\n- **Quantum Entanglement**: Correlated container placement and instant communication\n- **Quantum Load Balancing**: Optimal resource allocation using quantum algorithms\n- **Quantum Networking**: Secure communication through quantum channels\n- **Quantum Gates**: Fine-tune container behavior with quantum operations\n- **Real-time Rebalancing**: Dynamic optimization based on quantum measurements\n\n## How It Works\n\nThe Quantum Docker Engine applies quantum mechanical principles to container orchestration:\n\n1. **Superposition**: Containers are created in quantum superposition, exploring multiple deployment states\n2. **Entanglement**: Related containers are quantum entangled for correlated scheduling decisions\n3. **Measurement**: Quantum measurement collapses container states to optimal configurations\n4. **Interference**: Quantum interference patterns guide load balancing decisions\n5. **Decoherence**: System maintains quantum coherence while preventing unwanted state collapse\n\n## \ud83d\ude80 Quick Start\n\n### Prerequisites\n\n- Python 3.8+\n- Optional: Docker Desktop (not required for simulation)\n\n### Install\n\n```bash\npip install quantum-docker-engine\n```\n\nOptional extras:\n- Qiskit integration (optional, heavy dependency)\n\n```bash\npip install \"quantum-docker-engine[qiskit]\"\n# or with pipx\npipx install \"quantum-docker-engine[qiskit]\"\n```\n\n### Use the CLI\n\n```bash\n# Start engine\nqdocker start\n\n# Create a container in quantum superposition\nqdocker create nginx:alpine my-web --quantum-weight 2.0\n\n# Inspect and operate\nqdocker ps\nqdocker measure my-web\nqdocker run my-web\nqdocker status\n```\n\n## Detailed Usage\n\n### Engine Management\n\n**Start the engine**:\n```bash\nqdocker start\n```\n\n**Stop the engine**:\n```bash\nqdocker stop\n```\n\n**Check engine status**:\n```bash\nqdocker status\n```\n\n### Container Operations\n\n**Create a quantum container**:\n```bash\nqdocker create [OPTIONS] IMAGE NAME\n\nOptions:\n  --quantum-weight FLOAT    Quantum weight for superposition (default: 1.0)\n  --quantum-probability FLOAT  Measurement probability (default: 0.5)\n  --states TEXT            Comma-separated superposition states (default: running,stopped)\n  --cpu FLOAT             CPU requirement (default: 1.0)\n  --memory INTEGER        Memory in MB (default: 512)\n```\n\n**Run a container (performs quantum measurement)**:\n```bash\nqdocker run CONTAINER_NAME\n```\n\n**Stop a container**:\n```bash\nqdocker stop-container CONTAINER_NAME\n```\n\n**Measure quantum state**:\n```bash\nqdocker measure CONTAINER_NAME\n```\n\n**Inspect container details**:\n```bash\nqdocker inspect CONTAINER_NAME\n```\n\n### Quantum Operations\n\n**Create entanglement between containers**:\n```bash\nqdocker entangle CONTAINER1 CONTAINER2\n```\n\n**Apply quantum gates**:\n```bash\nqdocker apply-gate CONTAINER GATE_TYPE [--angle FLOAT]\n\nAvailable gates: X, Z, RY\n```\n\n**Quantum load balancing**:\n```bash\nqdocker load-balance CONTAINER1 CONTAINER2 CONTAINER3\n```\n\n**Resource rebalancing**:\n```bash\nqdocker rebalance\n```\n\n### Cluster Management\n\n**Create a quantum cluster** (from your own YAML file):\n```bash\nqdocker create-cluster path/to/your_cluster.yaml\n```\n\n**Send quantum messages**:\n```bash\nqdocker send-message SENDER RECEIVER MESSAGE_TYPE --data '{\"key\": \"value\"}'\n```\n\n### Maintenance\n\n**Run maintenance cycle**:\n```bash\nqdocker maintenance\n```\n\n**Export quantum state**:\n```bash\nqdocker export-state --filename quantum_state.json\n```\n\n## Practical Use Cases\n\n- Quantum load balancing across nodes using the built-in scheduler\n- Entangled services for correlated placement decisions\n- Hybrid workflows: mix measurements, gates, and rebalancing cycles\n\n## Configuration\n\n### Engine Configuration\n\nCreate a `quantum_engine.yaml` file:\n\n```yaml\nquantum_docker_config:\n  num_qubits: 16\n  simulation_backend: cirq\n  max_containers: 50\n  enable_quantum_networking: true\n  enable_quantum_scheduling: true\n  enable_quantum_load_balancing: true\n  decoherence_time_ms: 1000.0\n```\n\nUse with:\n```bash\nqdocker start --config quantum_engine.yaml\n```\n\n### Cluster Configuration\n\nDefine quantum clusters in YAML:\n\n```yaml\nname: my-quantum-cluster\ncontainers:\n  - name: web-server\n    image: nginx:alpine\n    quantum_weight: 1.0\n    quantum_probability: 0.8\n    superposition_states: [\"running\", \"stopped\"]\n    resource_requirements:\n      cpu: 0.5\n      memory: 512\n```\n\n## Quantum Concepts Explained\n\n### Superposition\nContainers exist in multiple states simultaneously, allowing the engine to explore all possible deployment configurations before measurement collapse.\n\n### Entanglement\nRelated containers share quantum states, ensuring correlated placement decisions (e.g., web servers on different nodes for redundancy).\n\n### Measurement\nQuantum measurement collapses superposition states to determine final container placement and configuration.\n\n### Decoherence\nThe system manages quantum decoherence to maintain optimal states while preventing unwanted state collapse.\n\n### Quantum Gates\nApply quantum transformations to modify container placement probabilities:\n- **X Gate**: Flip container state probabilities\n- **Z Gate**: Apply phase shifts to states\n- **RY Gate**: Rotate state probabilities by specified angle\n\n## Development\n\nFor contributors: set up a virtualenv and install in editable mode.\n\n```bash\ngit clone <repo>\ncd QuantumDockerEngine\npython -m venv .venv && source .venv/bin/activate\npip install -r requirements.txt\npip install -e .\n```\n\n## Advanced Features\n\n### Custom Quantum Algorithms\n\nImplement custom scheduling algorithms:\n\n```python\nfrom quantum_docker.quantum.circuit_manager import QuantumCircuitManager\n\nclass CustomQuantumScheduler:\n    def __init__(self, circuit_manager):\n        self.circuit_manager = circuit_manager\n    \n    def custom_allocation_algorithm(self, containers, nodes):\n        # Implement your quantum algorithm\n        pass\n```\n\n### Quantum Metrics\n\nMonitor quantum system health:\n\n```python\nstatus = await engine.get_engine_status()\ncoherence = status['resources']['quantum_coherence']\nentanglement = status['resources']['resource_entanglement']\n```\n\n### Hybrid Classical-Quantum Operations\n\nCombine classical and quantum scheduling:\n\n```python\n# Quantum load balancing for critical containers\ncritical_containers = [\"database\", \"api-server\"]\nquantum_allocation = await engine.quantum_load_balance(critical_containers)\n\n# Classical scheduling for regular containers\nregular_containers = [\"worker-1\", \"worker-2\"]\n# Apply classical round-robin or other algorithms\n```\n\n## Troubleshooting\n\n### Common Issues\n\n**Engine won't start**:\n- Check Docker is running\n- Verify Python dependencies are installed\n- Ensure sufficient system resources\n\n**Quantum measurement fails**:\n- Check quantum coherence levels\n- Verify container is in superposition state\n- Run maintenance cycle to refresh quantum states\n\n**Entanglement creation fails**:\n- Ensure both containers exist\n- Check quantum networking is enabled\n- Verify sufficient qubits available\n\n**Performance issues**:\n- Reduce number of qubits if running on limited hardware\n- Disable quantum networking for faster simulation\n- Increase decoherence time for more stable states\n\n### Debug Mode\n\nEnable verbose logging:\n\n```bash\nexport QUANTUM_DOCKER_DEBUG=1\nqdocker start\n```\n\n### Quantum State Inspection\n\nExport and analyze quantum states:\n\n```bash\nqdocker export-state --filename debug_state.json\n# Analyze the JSON file to understand quantum configurations\n```\n\n## Contributing\n\n1. Fork the repository\n2. Create a feature branch\n3. Implement your quantum enhancement\n4. Add tests for quantum behaviors\n5. Submit a pull request\n\n### Development Guidelines\n\n- Follow quantum computing best practices\n- Maintain quantum state consistency\n- Add comprehensive tests for quantum operations\n- Update documentation for new quantum features\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n## Acknowledgments\n\n- Google Cirq for quantum circuit simulation\n- IBM Qiskit for quantum computing frameworks\n- Docker for containerization technology\n- The quantum computing community for inspiration\n\n## Related Projects\n\n- [Cirq](https://github.com/quantumlib/Cirq) - Google's quantum computing framework\n- [Qiskit](https://github.com/Qiskit/qiskit) - IBM's quantum computing platform\n- [Docker](https://github.com/docker/docker-ce) - Container platform\n\n---\n\n**Note**: This is a prototype demonstrating quantum computing concepts applied to container orchestration. While the quantum simulations are accurate, actual quantum hardware integration would require significant additional development.\n\n*Made with quantum entanglement*\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Revolutionary container orchestration engine powered by quantum computing",
    "version": "1.0.2",
    "project_urls": {
        "Homepage": "https://github.com/quantum-docker/engine"
    },
    "split_keywords": [
        "quantum computing",
        " container orchestration",
        " docker",
        " kubernetes",
        " quantum algorithms"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "deb83cab62cb1921ba3faafefd2047563a7c92293b73319325c91f091c2d7675",
                "md5": "e35036a6b2835d08609e9a43d3dbdaec",
                "sha256": "d868e9b1074144176f31eddb17fb86207fcca68e3e394bd1040ccd6347d8b2f2"
            },
            "downloads": -1,
            "filename": "quantum_docker_engine-1.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e35036a6b2835d08609e9a43d3dbdaec",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 54845,
            "upload_time": "2025-09-06T03:56:49",
            "upload_time_iso_8601": "2025-09-06T03:56:49.261732Z",
            "url": "https://files.pythonhosted.org/packages/de/b8/3cab62cb1921ba3faafefd2047563a7c92293b73319325c91f091c2d7675/quantum_docker_engine-1.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ad20a848c8ff439d2382710940895af0b58e178b830e41970a5641da780ab5bb",
                "md5": "c5763bb319bf94ddfd5255b98756a2b4",
                "sha256": "79128e6c1148812d145c3d2440973ccac02197e0b44cfa58d7aa120f0dc7b4d0"
            },
            "downloads": -1,
            "filename": "quantum_docker_engine-1.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "c5763bb319bf94ddfd5255b98756a2b4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 50263,
            "upload_time": "2025-09-06T03:56:51",
            "upload_time_iso_8601": "2025-09-06T03:56:51.769737Z",
            "url": "https://files.pythonhosted.org/packages/ad/20/a848c8ff439d2382710940895af0b58e178b830e41970a5641da780ab5bb/quantum_docker_engine-1.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-06 03:56:51",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "quantum-docker",
    "github_project": "engine",
    "github_not_found": true,
    "lcname": "quantum-docker-engine"
}
        
Elapsed time: 2.41329s