# Quantum Docker Engine
A revolutionary container orchestration engine that leverages quantum computing principles to optimize container scheduling, resource allocation, and inter-container communication.
## Features
- **Quantum Superposition**: Containers exist in multiple states simultaneously until measured
- **Quantum Entanglement**: Correlated container placement and instant communication
- **Quantum Load Balancing**: Optimal resource allocation using quantum algorithms
- **Quantum Networking**: Secure communication through quantum channels
- **Quantum Gates**: Fine-tune container behavior with quantum operations
- **Real-time Rebalancing**: Dynamic optimization based on quantum measurements
## How It Works
The Quantum Docker Engine applies quantum mechanical principles to container orchestration:
1. **Superposition**: Containers are created in quantum superposition, exploring multiple deployment states
2. **Entanglement**: Related containers are quantum entangled for correlated scheduling decisions
3. **Measurement**: Quantum measurement collapses container states to optimal configurations
4. **Interference**: Quantum interference patterns guide load balancing decisions
5. **Decoherence**: System maintains quantum coherence while preventing unwanted state collapse
## 🚀 Quick Start
### Prerequisites
- Python 3.8+
- Optional: Docker Desktop (not required for simulation)
### Install
```bash
pip install quantum-docker-engine
```
Optional extras:
- Qiskit integration (optional, heavy dependency)
```bash
pip install "quantum-docker-engine[qiskit]"
# or with pipx
pipx install "quantum-docker-engine[qiskit]"
```
### Use the CLI
```bash
# Start engine
qdocker start
# Create a container in quantum superposition
qdocker create nginx:alpine my-web --quantum-weight 2.0
# Inspect and operate
qdocker ps
qdocker measure my-web
qdocker run my-web
qdocker status
```
## Detailed Usage
### Engine Management
**Start the engine**:
```bash
qdocker start
```
**Stop the engine**:
```bash
qdocker stop
```
**Check engine status**:
```bash
qdocker status
```
### Container Operations
**Create a quantum container**:
```bash
qdocker create [OPTIONS] IMAGE NAME
Options:
--quantum-weight FLOAT Quantum weight for superposition (default: 1.0)
--quantum-probability FLOAT Measurement probability (default: 0.5)
--states TEXT Comma-separated superposition states (default: running,stopped)
--cpu FLOAT CPU requirement (default: 1.0)
--memory INTEGER Memory in MB (default: 512)
```
**Run a container (performs quantum measurement)**:
```bash
qdocker run CONTAINER_NAME
```
**Stop a container**:
```bash
qdocker stop-container CONTAINER_NAME
```
**Measure quantum state**:
```bash
qdocker measure CONTAINER_NAME
```
**Inspect container details**:
```bash
qdocker inspect CONTAINER_NAME
```
### Quantum Operations
**Create entanglement between containers**:
```bash
qdocker entangle CONTAINER1 CONTAINER2
```
**Apply quantum gates**:
```bash
qdocker apply-gate CONTAINER GATE_TYPE [--angle FLOAT]
Available gates: X, Z, RY
```
**Quantum load balancing**:
```bash
qdocker load-balance CONTAINER1 CONTAINER2 CONTAINER3
```
**Resource rebalancing**:
```bash
qdocker rebalance
```
### Cluster Management
**Create a quantum cluster** (from your own YAML file):
```bash
qdocker create-cluster path/to/your_cluster.yaml
```
**Send quantum messages**:
```bash
qdocker send-message SENDER RECEIVER MESSAGE_TYPE --data '{"key": "value"}'
```
### Maintenance
**Run maintenance cycle**:
```bash
qdocker maintenance
```
**Export quantum state**:
```bash
qdocker export-state --filename quantum_state.json
```
## Practical Use Cases
- Quantum load balancing across nodes using the built-in scheduler
- Entangled services for correlated placement decisions
- Hybrid workflows: mix measurements, gates, and rebalancing cycles
## Configuration
### Engine Configuration
Create a `quantum_engine.yaml` file:
```yaml
quantum_docker_config:
num_qubits: 16
simulation_backend: cirq
max_containers: 50
enable_quantum_networking: true
enable_quantum_scheduling: true
enable_quantum_load_balancing: true
decoherence_time_ms: 1000.0
```
Use with:
```bash
qdocker start --config quantum_engine.yaml
```
### Cluster Configuration
Define quantum clusters in YAML:
```yaml
name: my-quantum-cluster
containers:
- name: web-server
image: nginx:alpine
quantum_weight: 1.0
quantum_probability: 0.8
superposition_states: ["running", "stopped"]
resource_requirements:
cpu: 0.5
memory: 512
```
## Quantum Concepts Explained
### Superposition
Containers exist in multiple states simultaneously, allowing the engine to explore all possible deployment configurations before measurement collapse.
### Entanglement
Related containers share quantum states, ensuring correlated placement decisions (e.g., web servers on different nodes for redundancy).
### Measurement
Quantum measurement collapses superposition states to determine final container placement and configuration.
### Decoherence
The system manages quantum decoherence to maintain optimal states while preventing unwanted state collapse.
### Quantum Gates
Apply quantum transformations to modify container placement probabilities:
- **X Gate**: Flip container state probabilities
- **Z Gate**: Apply phase shifts to states
- **RY Gate**: Rotate state probabilities by specified angle
## Development
For contributors: set up a virtualenv and install in editable mode.
```bash
git clone <repo>
cd QuantumDockerEngine
python -m venv .venv && source .venv/bin/activate
pip install -r requirements.txt
pip install -e .
```
## Advanced Features
### Custom Quantum Algorithms
Implement custom scheduling algorithms:
```python
from quantum_docker.quantum.circuit_manager import QuantumCircuitManager
class CustomQuantumScheduler:
def __init__(self, circuit_manager):
self.circuit_manager = circuit_manager
def custom_allocation_algorithm(self, containers, nodes):
# Implement your quantum algorithm
pass
```
### Quantum Metrics
Monitor quantum system health:
```python
status = await engine.get_engine_status()
coherence = status['resources']['quantum_coherence']
entanglement = status['resources']['resource_entanglement']
```
### Hybrid Classical-Quantum Operations
Combine classical and quantum scheduling:
```python
# Quantum load balancing for critical containers
critical_containers = ["database", "api-server"]
quantum_allocation = await engine.quantum_load_balance(critical_containers)
# Classical scheduling for regular containers
regular_containers = ["worker-1", "worker-2"]
# Apply classical round-robin or other algorithms
```
## Troubleshooting
### Common Issues
**Engine won't start**:
- Check Docker is running
- Verify Python dependencies are installed
- Ensure sufficient system resources
**Quantum measurement fails**:
- Check quantum coherence levels
- Verify container is in superposition state
- Run maintenance cycle to refresh quantum states
**Entanglement creation fails**:
- Ensure both containers exist
- Check quantum networking is enabled
- Verify sufficient qubits available
**Performance issues**:
- Reduce number of qubits if running on limited hardware
- Disable quantum networking for faster simulation
- Increase decoherence time for more stable states
### Debug Mode
Enable verbose logging:
```bash
export QUANTUM_DOCKER_DEBUG=1
qdocker start
```
### Quantum State Inspection
Export and analyze quantum states:
```bash
qdocker export-state --filename debug_state.json
# Analyze the JSON file to understand quantum configurations
```
## Contributing
1. Fork the repository
2. Create a feature branch
3. Implement your quantum enhancement
4. Add tests for quantum behaviors
5. Submit a pull request
### Development Guidelines
- Follow quantum computing best practices
- Maintain quantum state consistency
- Add comprehensive tests for quantum operations
- Update documentation for new quantum features
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## Acknowledgments
- Google Cirq for quantum circuit simulation
- IBM Qiskit for quantum computing frameworks
- Docker for containerization technology
- The quantum computing community for inspiration
## Related Projects
- [Cirq](https://github.com/quantumlib/Cirq) - Google's quantum computing framework
- [Qiskit](https://github.com/Qiskit/qiskit) - IBM's quantum computing platform
- [Docker](https://github.com/docker/docker-ce) - Container platform
---
**Note**: This is a prototype demonstrating quantum computing concepts applied to container orchestration. While the quantum simulations are accurate, actual quantum hardware integration would require significant additional development.
*Made with quantum entanglement*
Raw data
{
"_id": null,
"home_page": "https://github.com/quantum-docker/engine",
"name": "quantum-docker-engine",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "quantum computing, container orchestration, docker, kubernetes, quantum algorithms",
"author": "Quantum Docker Team",
"author_email": "contact@quantumdocker.io",
"download_url": "https://files.pythonhosted.org/packages/ad/20/a848c8ff439d2382710940895af0b58e178b830e41970a5641da780ab5bb/quantum_docker_engine-1.0.2.tar.gz",
"platform": null,
"description": "# Quantum Docker Engine\n\nA revolutionary container orchestration engine that leverages quantum computing principles to optimize container scheduling, resource allocation, and inter-container communication.\n\n## Features\n\n- **Quantum Superposition**: Containers exist in multiple states simultaneously until measured\n- **Quantum Entanglement**: Correlated container placement and instant communication\n- **Quantum Load Balancing**: Optimal resource allocation using quantum algorithms\n- **Quantum Networking**: Secure communication through quantum channels\n- **Quantum Gates**: Fine-tune container behavior with quantum operations\n- **Real-time Rebalancing**: Dynamic optimization based on quantum measurements\n\n## How It Works\n\nThe Quantum Docker Engine applies quantum mechanical principles to container orchestration:\n\n1. **Superposition**: Containers are created in quantum superposition, exploring multiple deployment states\n2. **Entanglement**: Related containers are quantum entangled for correlated scheduling decisions\n3. **Measurement**: Quantum measurement collapses container states to optimal configurations\n4. **Interference**: Quantum interference patterns guide load balancing decisions\n5. **Decoherence**: System maintains quantum coherence while preventing unwanted state collapse\n\n## \ud83d\ude80 Quick Start\n\n### Prerequisites\n\n- Python 3.8+\n- Optional: Docker Desktop (not required for simulation)\n\n### Install\n\n```bash\npip install quantum-docker-engine\n```\n\nOptional extras:\n- Qiskit integration (optional, heavy dependency)\n\n```bash\npip install \"quantum-docker-engine[qiskit]\"\n# or with pipx\npipx install \"quantum-docker-engine[qiskit]\"\n```\n\n### Use the CLI\n\n```bash\n# Start engine\nqdocker start\n\n# Create a container in quantum superposition\nqdocker create nginx:alpine my-web --quantum-weight 2.0\n\n# Inspect and operate\nqdocker ps\nqdocker measure my-web\nqdocker run my-web\nqdocker status\n```\n\n## Detailed Usage\n\n### Engine Management\n\n**Start the engine**:\n```bash\nqdocker start\n```\n\n**Stop the engine**:\n```bash\nqdocker stop\n```\n\n**Check engine status**:\n```bash\nqdocker status\n```\n\n### Container Operations\n\n**Create a quantum container**:\n```bash\nqdocker create [OPTIONS] IMAGE NAME\n\nOptions:\n --quantum-weight FLOAT Quantum weight for superposition (default: 1.0)\n --quantum-probability FLOAT Measurement probability (default: 0.5)\n --states TEXT Comma-separated superposition states (default: running,stopped)\n --cpu FLOAT CPU requirement (default: 1.0)\n --memory INTEGER Memory in MB (default: 512)\n```\n\n**Run a container (performs quantum measurement)**:\n```bash\nqdocker run CONTAINER_NAME\n```\n\n**Stop a container**:\n```bash\nqdocker stop-container CONTAINER_NAME\n```\n\n**Measure quantum state**:\n```bash\nqdocker measure CONTAINER_NAME\n```\n\n**Inspect container details**:\n```bash\nqdocker inspect CONTAINER_NAME\n```\n\n### Quantum Operations\n\n**Create entanglement between containers**:\n```bash\nqdocker entangle CONTAINER1 CONTAINER2\n```\n\n**Apply quantum gates**:\n```bash\nqdocker apply-gate CONTAINER GATE_TYPE [--angle FLOAT]\n\nAvailable gates: X, Z, RY\n```\n\n**Quantum load balancing**:\n```bash\nqdocker load-balance CONTAINER1 CONTAINER2 CONTAINER3\n```\n\n**Resource rebalancing**:\n```bash\nqdocker rebalance\n```\n\n### Cluster Management\n\n**Create a quantum cluster** (from your own YAML file):\n```bash\nqdocker create-cluster path/to/your_cluster.yaml\n```\n\n**Send quantum messages**:\n```bash\nqdocker send-message SENDER RECEIVER MESSAGE_TYPE --data '{\"key\": \"value\"}'\n```\n\n### Maintenance\n\n**Run maintenance cycle**:\n```bash\nqdocker maintenance\n```\n\n**Export quantum state**:\n```bash\nqdocker export-state --filename quantum_state.json\n```\n\n## Practical Use Cases\n\n- Quantum load balancing across nodes using the built-in scheduler\n- Entangled services for correlated placement decisions\n- Hybrid workflows: mix measurements, gates, and rebalancing cycles\n\n## Configuration\n\n### Engine Configuration\n\nCreate a `quantum_engine.yaml` file:\n\n```yaml\nquantum_docker_config:\n num_qubits: 16\n simulation_backend: cirq\n max_containers: 50\n enable_quantum_networking: true\n enable_quantum_scheduling: true\n enable_quantum_load_balancing: true\n decoherence_time_ms: 1000.0\n```\n\nUse with:\n```bash\nqdocker start --config quantum_engine.yaml\n```\n\n### Cluster Configuration\n\nDefine quantum clusters in YAML:\n\n```yaml\nname: my-quantum-cluster\ncontainers:\n - name: web-server\n image: nginx:alpine\n quantum_weight: 1.0\n quantum_probability: 0.8\n superposition_states: [\"running\", \"stopped\"]\n resource_requirements:\n cpu: 0.5\n memory: 512\n```\n\n## Quantum Concepts Explained\n\n### Superposition\nContainers exist in multiple states simultaneously, allowing the engine to explore all possible deployment configurations before measurement collapse.\n\n### Entanglement\nRelated containers share quantum states, ensuring correlated placement decisions (e.g., web servers on different nodes for redundancy).\n\n### Measurement\nQuantum measurement collapses superposition states to determine final container placement and configuration.\n\n### Decoherence\nThe system manages quantum decoherence to maintain optimal states while preventing unwanted state collapse.\n\n### Quantum Gates\nApply quantum transformations to modify container placement probabilities:\n- **X Gate**: Flip container state probabilities\n- **Z Gate**: Apply phase shifts to states\n- **RY Gate**: Rotate state probabilities by specified angle\n\n## Development\n\nFor contributors: set up a virtualenv and install in editable mode.\n\n```bash\ngit clone <repo>\ncd QuantumDockerEngine\npython -m venv .venv && source .venv/bin/activate\npip install -r requirements.txt\npip install -e .\n```\n\n## Advanced Features\n\n### Custom Quantum Algorithms\n\nImplement custom scheduling algorithms:\n\n```python\nfrom quantum_docker.quantum.circuit_manager import QuantumCircuitManager\n\nclass CustomQuantumScheduler:\n def __init__(self, circuit_manager):\n self.circuit_manager = circuit_manager\n \n def custom_allocation_algorithm(self, containers, nodes):\n # Implement your quantum algorithm\n pass\n```\n\n### Quantum Metrics\n\nMonitor quantum system health:\n\n```python\nstatus = await engine.get_engine_status()\ncoherence = status['resources']['quantum_coherence']\nentanglement = status['resources']['resource_entanglement']\n```\n\n### Hybrid Classical-Quantum Operations\n\nCombine classical and quantum scheduling:\n\n```python\n# Quantum load balancing for critical containers\ncritical_containers = [\"database\", \"api-server\"]\nquantum_allocation = await engine.quantum_load_balance(critical_containers)\n\n# Classical scheduling for regular containers\nregular_containers = [\"worker-1\", \"worker-2\"]\n# Apply classical round-robin or other algorithms\n```\n\n## Troubleshooting\n\n### Common Issues\n\n**Engine won't start**:\n- Check Docker is running\n- Verify Python dependencies are installed\n- Ensure sufficient system resources\n\n**Quantum measurement fails**:\n- Check quantum coherence levels\n- Verify container is in superposition state\n- Run maintenance cycle to refresh quantum states\n\n**Entanglement creation fails**:\n- Ensure both containers exist\n- Check quantum networking is enabled\n- Verify sufficient qubits available\n\n**Performance issues**:\n- Reduce number of qubits if running on limited hardware\n- Disable quantum networking for faster simulation\n- Increase decoherence time for more stable states\n\n### Debug Mode\n\nEnable verbose logging:\n\n```bash\nexport QUANTUM_DOCKER_DEBUG=1\nqdocker start\n```\n\n### Quantum State Inspection\n\nExport and analyze quantum states:\n\n```bash\nqdocker export-state --filename debug_state.json\n# Analyze the JSON file to understand quantum configurations\n```\n\n## Contributing\n\n1. Fork the repository\n2. Create a feature branch\n3. Implement your quantum enhancement\n4. Add tests for quantum behaviors\n5. Submit a pull request\n\n### Development Guidelines\n\n- Follow quantum computing best practices\n- Maintain quantum state consistency\n- Add comprehensive tests for quantum operations\n- Update documentation for new quantum features\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n## Acknowledgments\n\n- Google Cirq for quantum circuit simulation\n- IBM Qiskit for quantum computing frameworks\n- Docker for containerization technology\n- The quantum computing community for inspiration\n\n## Related Projects\n\n- [Cirq](https://github.com/quantumlib/Cirq) - Google's quantum computing framework\n- [Qiskit](https://github.com/Qiskit/qiskit) - IBM's quantum computing platform\n- [Docker](https://github.com/docker/docker-ce) - Container platform\n\n---\n\n**Note**: This is a prototype demonstrating quantum computing concepts applied to container orchestration. While the quantum simulations are accurate, actual quantum hardware integration would require significant additional development.\n\n*Made with quantum entanglement*\n",
"bugtrack_url": null,
"license": null,
"summary": "Revolutionary container orchestration engine powered by quantum computing",
"version": "1.0.2",
"project_urls": {
"Homepage": "https://github.com/quantum-docker/engine"
},
"split_keywords": [
"quantum computing",
" container orchestration",
" docker",
" kubernetes",
" quantum algorithms"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "deb83cab62cb1921ba3faafefd2047563a7c92293b73319325c91f091c2d7675",
"md5": "e35036a6b2835d08609e9a43d3dbdaec",
"sha256": "d868e9b1074144176f31eddb17fb86207fcca68e3e394bd1040ccd6347d8b2f2"
},
"downloads": -1,
"filename": "quantum_docker_engine-1.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "e35036a6b2835d08609e9a43d3dbdaec",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 54845,
"upload_time": "2025-09-06T03:56:49",
"upload_time_iso_8601": "2025-09-06T03:56:49.261732Z",
"url": "https://files.pythonhosted.org/packages/de/b8/3cab62cb1921ba3faafefd2047563a7c92293b73319325c91f091c2d7675/quantum_docker_engine-1.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ad20a848c8ff439d2382710940895af0b58e178b830e41970a5641da780ab5bb",
"md5": "c5763bb319bf94ddfd5255b98756a2b4",
"sha256": "79128e6c1148812d145c3d2440973ccac02197e0b44cfa58d7aa120f0dc7b4d0"
},
"downloads": -1,
"filename": "quantum_docker_engine-1.0.2.tar.gz",
"has_sig": false,
"md5_digest": "c5763bb319bf94ddfd5255b98756a2b4",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 50263,
"upload_time": "2025-09-06T03:56:51",
"upload_time_iso_8601": "2025-09-06T03:56:51.769737Z",
"url": "https://files.pythonhosted.org/packages/ad/20/a848c8ff439d2382710940895af0b58e178b830e41970a5641da780ab5bb/quantum_docker_engine-1.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-09-06 03:56:51",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "quantum-docker",
"github_project": "engine",
"github_not_found": true,
"lcname": "quantum-docker-engine"
}