# Quantum-Enhanced GANs Pro π
[](https://pypi.org/project/quantum-generative-adversarial-networks-pro/)
[](https://pepy.tech/projects/quantum-generative-adversarial-networks-pro)
[](https://www.python.org/downloads/)
[](https://krish567366.github.io/license-server/)
[](https://krish567366.github.io/quantum-generative-adversarial-networks-pro/)
A cutting-edge **Quantum-Enhanced Generative Adversarial Network** framework that leverages quantum computing techniques to improve fidelity, diversity, and fairness of synthetic data generation.
## π LICENSE REQUIRED
**β οΈ IMPORTANT: This package requires a valid license to use.**
π§ **Contact:** bajpaikrishna715@gmail.com
π§ **Machine ID Required:** Get your machine ID with `qgans-pro license machine-id`
πΌ **Commercial & Research Use:** Available for both commercial and research applications
### οΏ½ Licensed Features
- β
**Quantum Generators**: Parameterized quantum circuits
- β
**Quantum Discriminators**: Quantum kernel-based classifiers
- β
**Hybrid Training**: Classical-quantum optimization
- β
**Multiple Backends**: Qiskit, PennyLane support
- β
**Bias Mitigation**: Fairness-aware algorithms
- β
**Advanced Metrics**: FID, IS, quantum-specific metrics
- β
**CLI Tools**: Training, generation, benchmarking
- β
**Documentation**: Tutorials and examples
## π Quick Start
### Installation
```bash
pip install quantum-generative-adversarial-networks-pro
```
### License Setup
1. **Get your Machine ID:**
```bash
qgans-pro license machine-id
```
2. **Request a license:**
```bash
qgans-pro license request
```
3. **Contact for license:** bajpaikrishna715@gmail.com with:
- Your name and organization
- Machine ID (from step 1)
- Intended use case
- Required features
4. **Check license status:**
```bash
qgans-pro license status
```
### Basic Usage (After License Activation)
```python
import torch
from qgans_pro import QuantumGAN, QuantumGenerator, QuantumDiscriminator
# Initialize quantum components (requires valid license)
generator = QuantumGenerator(
n_qubits=8,
n_layers=3,
backend='qiskit'
)
discriminator = QuantumDiscriminator(
n_qubits=8,
n_layers=2,
backend='qiskit'
)
# Create and train the quantum GAN
qgan = QuantumGAN(generator, discriminator)
qgan.train(data_loader, epochs=100)
# Generate synthetic data
synthetic_data = qgan.generate(n_samples=1000)
```
### CLI Usage
```bash
# Train a quantum GAN on Fashion-MNIST
qgans-pro train --dataset fashion-mnist --backend qiskit --epochs 100
# Generate synthetic samples
qgans-pro generate --model-path ./models/qgan.pt --n-samples 1000
# Run benchmarks
qgans-pro benchmark --compare-classical --dataset mnist
```
## π§ Quantum Advantage
Our framework provides several quantum advantages over classical GANs:
1. **Enhanced Expressivity**: Quantum circuits can represent complex probability distributions more efficiently
2. **Reduced Mode Collapse**: Quantum superposition helps explore diverse data modes
3. **Better Convergence**: Quantum interference effects can help escape local minima
4. **Fairness Preservation**: Quantum entanglement naturally preserves correlations in fair representations
## π Supported Datasets
- **Image Data**: MNIST, Fashion-MNIST, CIFAR-10, CelebA
- **Tabular Data**: UCI datasets, synthetic datasets with bias
- **Time Series**: Financial data, sensor data
- **Custom Data**: Easy integration with PyTorch DataLoader
## ποΈ Architecture
```
βββββββββββββββββββ ββββββββββββββββββββ
β Classical Data β β Quantum Circuit β
β Preprocessing βββββΆβ Generator β
βββββββββββββββββββ ββββββββββββββββββββ
β
βΌ
ββββββββββββββββββββ
β Generated β
β Quantum States β
ββββββββββββββββββββ
β
βΌ
βββββββββββββββββββ ββββββββββββββββββββ
β Classical β β Quantum Circuit β
β Measurement ββββββ Discriminator β
βββββββββββββββββββ ββββββββββββββββββββ
```
## π Documentation
- **[Getting Started](https://krish567366.github.io/quantum-generative-adversarial-networks-pro/getting-started/)**
- **[Quantum GAN Theory](https://krish567366.github.io/quantum-generative-adversarial-networks-pro/theory/)**
- **[API Reference](https://krish567366.github.io/quantum-generative-adversarial-networks-pro/api/)**
- **[Examples & Tutorials](https://krish567366.github.io/quantum-generative-adversarial-networks-pro/examples/)**
## π¬ Research & Benchmarks
Our quantum-enhanced approach shows significant improvements:
| Metric | Classical GAN | Quantum GAN | Improvement |
|--------|---------------|-------------|-------------|
| FID Score | 45.2 | 32.8 | **27.4%** |
| Inception Score | 6.1 | 7.8 | **27.9%** |
| Mode Coverage | 78% | 92% | **17.9%** |
| Bias Reduction | - | - | **35%** |
## π€ Contributing
We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.
## π License
This project is licensed under the Commercial License - see the [LICENSE](LICENSE) file for details.
## π Acknowledgments
- Quantum computing backends: [Qiskit](https://qiskit.org/), [PennyLane](https://pennylane.ai/)
- Classical GAN implementations inspired by [PyTorch tutorials](https://pytorch.org/tutorials/)
- Quantum machine learning research community
## π§ Contact
**Krishna Bajpai**
- Email: bajpaikrishna715@gmail.com
- GitHub: [@krish567366](https://github.com/krish567366)
## π Star History
[](https://star-history.com/#krish567366/quantum-generative-adversarial-networks-pro&Timeline)
---
*Built with β€οΈ and quantum computing*
Raw data
{
"_id": null,
"home_page": "https://github.com/krish567366/quantum-generative-adversarial-networks-pro",
"name": "quantum-generative-adversarial-networks-pro",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "quantum computing, generative adversarial networks, machine learning, qiskit, pennylane",
"author": "Krishna Bajpai",
"author_email": "Krishna Bajpai <bajpaikrishna715@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/30/fa/23f0ae63b9969329415a252cbf788db4266f5a9f31d0f6d22c9c35ef4b21/quantum_generative_adversarial_networks_pro-1.0.0.tar.gz",
"platform": "any",
"description": "# Quantum-Enhanced GANs Pro \ud83d\ude80\r\n\r\n[](https://pypi.org/project/quantum-generative-adversarial-networks-pro/)\r\n[](https://pepy.tech/projects/quantum-generative-adversarial-networks-pro)\r\n[](https://www.python.org/downloads/)\r\n[](https://krish567366.github.io/license-server/)\r\n[](https://krish567366.github.io/quantum-generative-adversarial-networks-pro/)\r\n\r\nA cutting-edge **Quantum-Enhanced Generative Adversarial Network** framework that leverages quantum computing techniques to improve fidelity, diversity, and fairness of synthetic data generation.\r\n\r\n## \ud83d\udd10 LICENSE REQUIRED\r\n\r\n**\u26a0\ufe0f IMPORTANT: This package requires a valid license to use.**\r\n\r\n\ud83d\udce7 **Contact:** bajpaikrishna715@gmail.com \r\n\ud83d\udd27 **Machine ID Required:** Get your machine ID with `qgans-pro license machine-id` \r\n\ud83d\udcbc **Commercial & Research Use:** Available for both commercial and research applications\r\n\r\n### \ufffd Licensed Features\r\n\r\n- \u2705 **Quantum Generators**: Parameterized quantum circuits\r\n- \u2705 **Quantum Discriminators**: Quantum kernel-based classifiers \r\n- \u2705 **Hybrid Training**: Classical-quantum optimization\r\n- \u2705 **Multiple Backends**: Qiskit, PennyLane support\r\n- \u2705 **Bias Mitigation**: Fairness-aware algorithms\r\n- \u2705 **Advanced Metrics**: FID, IS, quantum-specific metrics\r\n- \u2705 **CLI Tools**: Training, generation, benchmarking\r\n- \u2705 **Documentation**: Tutorials and examples\r\n\r\n## \ud83d\ude80 Quick Start\r\n\r\n### Installation\r\n\r\n```bash\r\npip install quantum-generative-adversarial-networks-pro\r\n```\r\n\r\n### License Setup\r\n\r\n1. **Get your Machine ID:**\r\n```bash\r\nqgans-pro license machine-id\r\n```\r\n\r\n2. **Request a license:**\r\n```bash\r\nqgans-pro license request\r\n```\r\n\r\n3. **Contact for license:** bajpaikrishna715@gmail.com with:\r\n - Your name and organization\r\n - Machine ID (from step 1)\r\n - Intended use case\r\n - Required features\r\n\r\n4. **Check license status:**\r\n```bash\r\nqgans-pro license status\r\n```\r\n\r\n### Basic Usage (After License Activation)\r\n\r\n```python\r\nimport torch\r\nfrom qgans_pro import QuantumGAN, QuantumGenerator, QuantumDiscriminator\r\n\r\n# Initialize quantum components (requires valid license)\r\ngenerator = QuantumGenerator(\r\n n_qubits=8,\r\n n_layers=3,\r\n backend='qiskit'\r\n)\r\n\r\ndiscriminator = QuantumDiscriminator(\r\n n_qubits=8,\r\n n_layers=2,\r\n backend='qiskit'\r\n)\r\n\r\n# Create and train the quantum GAN\r\nqgan = QuantumGAN(generator, discriminator)\r\nqgan.train(data_loader, epochs=100)\r\n\r\n# Generate synthetic data\r\nsynthetic_data = qgan.generate(n_samples=1000)\r\n```\r\n\r\n### CLI Usage\r\n\r\n```bash\r\n# Train a quantum GAN on Fashion-MNIST\r\nqgans-pro train --dataset fashion-mnist --backend qiskit --epochs 100\r\n\r\n# Generate synthetic samples\r\nqgans-pro generate --model-path ./models/qgan.pt --n-samples 1000\r\n\r\n# Run benchmarks\r\nqgans-pro benchmark --compare-classical --dataset mnist\r\n```\r\n\r\n## \ud83e\udde0 Quantum Advantage\r\n\r\nOur framework provides several quantum advantages over classical GANs:\r\n\r\n1. **Enhanced Expressivity**: Quantum circuits can represent complex probability distributions more efficiently\r\n2. **Reduced Mode Collapse**: Quantum superposition helps explore diverse data modes\r\n3. **Better Convergence**: Quantum interference effects can help escape local minima\r\n4. **Fairness Preservation**: Quantum entanglement naturally preserves correlations in fair representations\r\n\r\n## \ud83d\udcca Supported Datasets\r\n\r\n- **Image Data**: MNIST, Fashion-MNIST, CIFAR-10, CelebA\r\n- **Tabular Data**: UCI datasets, synthetic datasets with bias\r\n- **Time Series**: Financial data, sensor data\r\n- **Custom Data**: Easy integration with PyTorch DataLoader\r\n\r\n## \ud83c\udfd7\ufe0f Architecture\r\n\r\n```\r\n\u250c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2510 \u250c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2510\r\n\u2502 Classical Data \u2502 \u2502 Quantum Circuit \u2502\r\n\u2502 Preprocessing \u2502\u2500\u2500\u2500\u25b6\u2502 Generator \u2502\r\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518 \u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\r\n \u2502\r\n \u25bc\r\n \u250c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2510\r\n \u2502 Generated \u2502\r\n \u2502 Quantum States \u2502\r\n \u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\r\n \u2502\r\n \u25bc\r\n\u250c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2510 \u250c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2510\r\n\u2502 Classical \u2502 \u2502 Quantum Circuit \u2502\r\n\u2502 Measurement \u2502\u25c0\u2500\u2500\u2500\u2502 Discriminator \u2502\r\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518 \u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\r\n```\r\n\r\n## \ud83d\udcda Documentation\r\n\r\n- **[Getting Started](https://krish567366.github.io/quantum-generative-adversarial-networks-pro/getting-started/)**\r\n- **[Quantum GAN Theory](https://krish567366.github.io/quantum-generative-adversarial-networks-pro/theory/)**\r\n- **[API Reference](https://krish567366.github.io/quantum-generative-adversarial-networks-pro/api/)**\r\n- **[Examples & Tutorials](https://krish567366.github.io/quantum-generative-adversarial-networks-pro/examples/)**\r\n\r\n## \ud83d\udd2c Research & Benchmarks\r\n\r\nOur quantum-enhanced approach shows significant improvements:\r\n\r\n| Metric | Classical GAN | Quantum GAN | Improvement |\r\n|--------|---------------|-------------|-------------|\r\n| FID Score | 45.2 | 32.8 | **27.4%** |\r\n| Inception Score | 6.1 | 7.8 | **27.9%** |\r\n| Mode Coverage | 78% | 92% | **17.9%** |\r\n| Bias Reduction | - | - | **35%** |\r\n\r\n## \ud83e\udd1d Contributing\r\n\r\nWe welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.\r\n\r\n## \ud83d\udcc4 License\r\n\r\nThis project is licensed under the Commercial License - see the [LICENSE](LICENSE) file for details.\r\n\r\n## \ud83d\ude4f Acknowledgments\r\n\r\n- Quantum computing backends: [Qiskit](https://qiskit.org/), [PennyLane](https://pennylane.ai/)\r\n- Classical GAN implementations inspired by [PyTorch tutorials](https://pytorch.org/tutorials/)\r\n- Quantum machine learning research community\r\n\r\n## \ud83d\udce7 Contact\r\n\r\n**Krishna Bajpai**\r\n\r\n- Email: bajpaikrishna715@gmail.com\r\n- GitHub: [@krish567366](https://github.com/krish567366)\r\n\r\n## \ud83c\udf1f Star History\r\n\r\n[](https://star-history.com/#krish567366/quantum-generative-adversarial-networks-pro&Timeline)\r\n\r\n---\r\n\r\n*Built with \u2764\ufe0f and quantum computing*\r\n",
"bugtrack_url": null,
"license": "Commercial",
"summary": "Quantum-enhanced GAN framework for high-fidelity synthetic data generation",
"version": "1.0.0",
"project_urls": {
"Documentation": "https://krish567366.github.io/quantum-generative-adversarial-networks-pro/",
"Homepage": "https://github.com/krish567366/quantum-generative-adversarial-networks-pro",
"Issues": "https://github.com/krish567366/quantum-generative-adversarial-networks-pro/issues",
"Repository": "https://github.com/krish567366/quantum-generative-adversarial-networks-pro"
},
"split_keywords": [
"quantum computing",
" generative adversarial networks",
" machine learning",
" qiskit",
" pennylane"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "0ae1bfce58c108a0fbe44bd9b407ff1cd9700f8f027642c5f408833745d74cfb",
"md5": "222aeb70b05475fcc0503e264c9fa2c3",
"sha256": "03b6dad36f27b083eeb916b1873d9eae74fa4bd15c4be8eb8fc4c8ec6de93dc9"
},
"downloads": -1,
"filename": "quantum_generative_adversarial_networks_pro-1.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "222aeb70b05475fcc0503e264c9fa2c3",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 58677,
"upload_time": "2025-07-16T06:24:23",
"upload_time_iso_8601": "2025-07-16T06:24:23.131102Z",
"url": "https://files.pythonhosted.org/packages/0a/e1/bfce58c108a0fbe44bd9b407ff1cd9700f8f027642c5f408833745d74cfb/quantum_generative_adversarial_networks_pro-1.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "30fa23f0ae63b9969329415a252cbf788db4266f5a9f31d0f6d22c9c35ef4b21",
"md5": "53fe317b3d244b92c4ced1b6f300691a",
"sha256": "cff820512d1df12981023cbc264a843e38c303e476eaaab07f28080cf7646126"
},
"downloads": -1,
"filename": "quantum_generative_adversarial_networks_pro-1.0.0.tar.gz",
"has_sig": false,
"md5_digest": "53fe317b3d244b92c4ced1b6f300691a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 50307,
"upload_time": "2025-07-16T06:24:24",
"upload_time_iso_8601": "2025-07-16T06:24:24.553388Z",
"url": "https://files.pythonhosted.org/packages/30/fa/23f0ae63b9969329415a252cbf788db4266f5a9f31d0f6d22c9c35ef4b21/quantum_generative_adversarial_networks_pro-1.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-16 06:24:24",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "krish567366",
"github_project": "quantum-generative-adversarial-networks-pro",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "quantum-generative-adversarial-networks-pro"
}