quantum-random


Namequantum-random JSON
Version 1.4.2 PyPI version JSON
download
home_pageNone
SummaryQuantum random numbers
upload_time2024-11-24 10:33:23
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseMIT License
keywords quantum random statistics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Quantum random numbers in Python

[![Tests](https://img.shields.io/github/actions/workflow/status/sbalian/quantum-random/tests.yml?label=tests
)](https://github.com/sbalian/quantum-random/actions/workflows/tests.yml)
[![Version](https://img.shields.io/pypi/v/quantum-random)](https://pypi.org/project/quantum-random/)
![Python Versions](https://img.shields.io/pypi/pyversions/quantum-random)
[![Download Stats](https://img.shields.io/pypi/dm/quantum-random)](https://pypistats.org/packages/quantum-random)
![License](https://img.shields.io/github/license/sbalian/quantum-random)

Use the [Python random module][pyrandom] with real quantum random numbers from
[ANU][anu]. The default pseudo-random generator is replaced by calls to
the ANU API.

## Usage

Import `qrandom` and use it like the standard `random` module. For example:

```python
>>> import qrandom

>>> qrandom.random()
0.15357449726583722

>>> qrandom.sample(range(10), 2)
[6, 4]

>>> qrandom.gauss(0.0, 1.0)
-0.8370871276247828
```

Alternatively, you can use the class `qrandom.QuantumRandom`. It has the same
interface as `random.Random`.

There is also a [NumPy][numpy] interface, although it is not fully tested:

```python
>>> from qrandom.numpy import quantum_rng

>>> qrng = quantum_rng()

>>> qrng.random((3, 3))  # use like numpy.random.default_rng()
array([[0.37220278, 0.24337193, 0.67534826],
       [0.209068  , 0.25108681, 0.49201691],
       [0.35894084, 0.72219929, 0.55388594]])
```

NumPy is supported using [RandomGen][randomgen].

## Installation

The minimum supported Python version is 3.9. Install with `pip`:

```bash
pip install -U quantum-random
```

If you want NumPy support:

```bash
pip install -U 'quantum-random[numpy]'
```

## First-time setup: setting your API key

ANU requires you to use an API key. You can get a free trial or pay for a key
[here][anupricing].

You can pass your key to `qrandom` in three ways:

1. By setting the environment variable `QRANDOM_API_KEY`.
2. By running the included command line utility `qrandom-init` to save your
key in `qrandom.ini` in a subdirectory of your home config directory
as specified by XDG, e.g., `/home/<your-username>/.config/qrandom/`.
3. By running `qrandom-init` to save your key in `qrandom.ini` in a directory
of your choice, and then specifying this directory by setting
`QRANDOM_CONFIG_DIR`.

If `QRANDOM_API_KEY` is set, its value is used as the API key and the
config file is not read. Otherwise, `qrandom` will look for the key
in the config directory. The config directory defaults to the XDG home config
and can be changed by setting `QRANDOM_CONFIG_DIR`.

## Pre-fetching batches

Batches of quantum numbers are fetched from the API as needed.
Each batch contains 1024 numbers. Use `qrandom.fill(n)` to fetch `n` batches
if you need to pre-fetch at the start of your computation.

## Tests

The tests run for Python 3.9 - 3.12 on the latest Windows,
macOS and Ubuntu runner images.

See [here](./analysis/uniform.md) for a visualisation and a Kolmogorov–Smirnov
test.

## Notes on implementation

The `qrandom` module exposes a class derived from `random.Random` with a
`random()` method that outputs quantum floats in the range [0, 1)
(converted from 64-bit integers). Overriding `random.Random.random`
is sufficient to make the `qrandom` module behave mostly like the
`random` module as described in the [Python docs][pyrandom]. The exceptions
are `getrandbits()` and `randbytes()`: these are not available in
`qrandom`. Because `getrandbits()` is not available, `randrange()` cannot
produce arbitrarily long sequences. Finally, the user is warned when `seed()`
is called because the quantum generator has no state. For the same reason,
`getstate()` and `setstate()` are not implemented.

## License

See [LICENCE](./LICENSE).

[anu]: https://quantumnumbers.anu.edu.au
[anupricing]: https://quantumnumbers.anu.edu.au/pricing
[pyrandom]: https://docs.python.org/3/library/random.html
[numpy]: https://numpy.org
[randomgen]: https://github.com/bashtage/randomgen

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "quantum-random",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": "Seto Balian <seto.balian@gmail.com>",
    "keywords": "quantum, random, statistics",
    "author": null,
    "author_email": "Seto Balian <seto.balian@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/c0/e8/87c8e2255bab2a88f8883f64001c058f2fb504534fef6b4d8d04eb7a617a/quantum_random-1.4.2.tar.gz",
    "platform": null,
    "description": "# Quantum random numbers in Python\n\n[![Tests](https://img.shields.io/github/actions/workflow/status/sbalian/quantum-random/tests.yml?label=tests\n)](https://github.com/sbalian/quantum-random/actions/workflows/tests.yml)\n[![Version](https://img.shields.io/pypi/v/quantum-random)](https://pypi.org/project/quantum-random/)\n![Python Versions](https://img.shields.io/pypi/pyversions/quantum-random)\n[![Download Stats](https://img.shields.io/pypi/dm/quantum-random)](https://pypistats.org/packages/quantum-random)\n![License](https://img.shields.io/github/license/sbalian/quantum-random)\n\nUse the [Python random module][pyrandom] with real quantum random numbers from\n[ANU][anu]. The default pseudo-random generator is replaced by calls to\nthe ANU API.\n\n## Usage\n\nImport `qrandom` and use it like the standard `random` module. For example:\n\n```python\n>>> import qrandom\n\n>>> qrandom.random()\n0.15357449726583722\n\n>>> qrandom.sample(range(10), 2)\n[6, 4]\n\n>>> qrandom.gauss(0.0, 1.0)\n-0.8370871276247828\n```\n\nAlternatively, you can use the class `qrandom.QuantumRandom`. It has the same\ninterface as `random.Random`.\n\nThere is also a [NumPy][numpy] interface, although it is not fully tested:\n\n```python\n>>> from qrandom.numpy import quantum_rng\n\n>>> qrng = quantum_rng()\n\n>>> qrng.random((3, 3))  # use like numpy.random.default_rng()\narray([[0.37220278, 0.24337193, 0.67534826],\n       [0.209068  , 0.25108681, 0.49201691],\n       [0.35894084, 0.72219929, 0.55388594]])\n```\n\nNumPy is supported using [RandomGen][randomgen].\n\n## Installation\n\nThe minimum supported Python version is 3.9. Install with `pip`:\n\n```bash\npip install -U quantum-random\n```\n\nIf you want NumPy support:\n\n```bash\npip install -U 'quantum-random[numpy]'\n```\n\n## First-time setup: setting your API key\n\nANU requires you to use an API key. You can get a free trial or pay for a key\n[here][anupricing].\n\nYou can pass your key to `qrandom` in three ways:\n\n1. By setting the environment variable `QRANDOM_API_KEY`.\n2. By running the included command line utility `qrandom-init` to save your\nkey in `qrandom.ini` in a subdirectory of your home config directory\nas specified by XDG, e.g., `/home/<your-username>/.config/qrandom/`.\n3. By running `qrandom-init` to save your key in `qrandom.ini` in a directory\nof your choice, and then specifying this directory by setting\n`QRANDOM_CONFIG_DIR`.\n\nIf `QRANDOM_API_KEY` is set, its value is used as the API key and the\nconfig file is not read. Otherwise, `qrandom` will look for the key\nin the config directory. The config directory defaults to the XDG home config\nand can be changed by setting `QRANDOM_CONFIG_DIR`.\n\n## Pre-fetching batches\n\nBatches of quantum numbers are fetched from the API as needed.\nEach batch contains 1024 numbers. Use `qrandom.fill(n)` to fetch `n` batches\nif you need to pre-fetch at the start of your computation.\n\n## Tests\n\nThe tests run for Python 3.9 - 3.12 on the latest Windows,\nmacOS and Ubuntu runner images.\n\nSee [here](./analysis/uniform.md) for a visualisation and a Kolmogorov\u2013Smirnov\ntest.\n\n## Notes on implementation\n\nThe `qrandom` module exposes a class derived from `random.Random` with a\n`random()` method that outputs quantum floats in the range [0, 1)\n(converted from 64-bit integers). Overriding `random.Random.random`\nis sufficient to make the `qrandom` module behave mostly like the\n`random` module as described in the [Python docs][pyrandom]. The exceptions\nare `getrandbits()` and `randbytes()`: these are not available in\n`qrandom`. Because `getrandbits()` is not available, `randrange()` cannot\nproduce arbitrarily long sequences. Finally, the user is warned when `seed()`\nis called because the quantum generator has no state. For the same reason,\n`getstate()` and `setstate()` are not implemented.\n\n## License\n\nSee [LICENCE](./LICENSE).\n\n[anu]: https://quantumnumbers.anu.edu.au\n[anupricing]: https://quantumnumbers.anu.edu.au/pricing\n[pyrandom]: https://docs.python.org/3/library/random.html\n[numpy]: https://numpy.org\n[randomgen]: https://github.com/bashtage/randomgen\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "Quantum random numbers",
    "version": "1.4.2",
    "project_urls": {
        "Homepage": "https://github.com/sbalian/quantum-random",
        "Repository": "https://github.com/sbalian/quantum-random"
    },
    "split_keywords": [
        "quantum",
        " random",
        " statistics"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "43d4260a7ebfe09942565d9fc89658e4bac21fa403f38b303a8bc41ebd13f5ca",
                "md5": "c9a4ba6bfc9896945e8a914c7158b96c",
                "sha256": "caba832bfc332f304cebb75adfba7045151484001b7193d5e2f79647beab8f40"
            },
            "downloads": -1,
            "filename": "quantum_random-1.4.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c9a4ba6bfc9896945e8a914c7158b96c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 8820,
            "upload_time": "2024-11-24T10:33:22",
            "upload_time_iso_8601": "2024-11-24T10:33:22.881781Z",
            "url": "https://files.pythonhosted.org/packages/43/d4/260a7ebfe09942565d9fc89658e4bac21fa403f38b303a8bc41ebd13f5ca/quantum_random-1.4.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c0e887c8e2255bab2a88f8883f64001c058f2fb504534fef6b4d8d04eb7a617a",
                "md5": "149956e2b92ac98af84ea84e32de8c84",
                "sha256": "075e01d08f8168297f56398febf88cafc9b0ef127182d9fc486d2b68a5f57e8e"
            },
            "downloads": -1,
            "filename": "quantum_random-1.4.2.tar.gz",
            "has_sig": false,
            "md5_digest": "149956e2b92ac98af84ea84e32de8c84",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 167276,
            "upload_time": "2024-11-24T10:33:23",
            "upload_time_iso_8601": "2024-11-24T10:33:23.825623Z",
            "url": "https://files.pythonhosted.org/packages/c0/e8/87c8e2255bab2a88f8883f64001c058f2fb504534fef6b4d8d04eb7a617a/quantum_random-1.4.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-24 10:33:23",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "sbalian",
    "github_project": "quantum-random",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "quantum-random"
}
        
Elapsed time: 4.40948s