# Quantup utils
This is package of tools for EDA and modelling.
Intelligent easy to use and very flexible plot functions giving plots reach in information
and fitting our analytical needs;
they are nicely formatted and ready for placing in official reports.
Summary for data frames – much better and more flexible then standard `pd.describe`.
Etc.
Under constant development.
## Installation
pip install -i https://test.pypi.org/simple/ quantup-utils
## Requirements
numpy
pandas
matplotlib
scikit-learn
statsmodels
Dependencies currently do not install automatically (to be fixed soon).
Raw data
{
"_id": null,
"home_page": null,
"name": "quantup-utils",
"maintainer": null,
"docs_url": null,
"requires_python": "<4,>=3.7",
"maintainer_email": null,
"keywords": "data, plotting, summary, variables, covariates, data frame, EDA, modelling",
"author": "Arkadiusz Kasprzyk",
"author_email": "arkadiusz.kasprzyk@quantup.pl",
"download_url": "https://files.pythonhosted.org/packages/5d/f2/a76c174113b83fb14ee20886b76fba2387eb368eb08b869c7df8a3a9e841/quantup_utils-1.1.3.tar.gz",
"platform": null,
"description": "# Quantup utils\n\nThis is package of tools for EDA and modelling.\n\nIntelligent easy to use and very flexible plot functions giving plots reach in information\nand fitting our analytical needs;\nthey are nicely formatted and ready for placing in official reports.\n\nSummary for data frames \u2013 much better and more flexible then standard `pd.describe`.\n\nEtc.\n\nUnder constant development.\n\n## Installation\n\n pip install -i https://test.pypi.org/simple/ quantup-utils\n\n## Requirements\n\n numpy\n pandas\n matplotlib\n scikit-learn\n statsmodels\n\nDependencies currently do not install automatically (to be fixed soon).\n",
"bugtrack_url": null,
"license": null,
"summary": "Quantup utils mainly for EDA and modelling.",
"version": "1.1.3",
"project_urls": {
"Bug Reports": "https://github.com/QuantUp/qutils/issues/",
"Repository": "https://github.com/QuantUp/qutils/tree/main/utils-1.0"
},
"split_keywords": [
"data",
" plotting",
" summary",
" variables",
" covariates",
" data frame",
" eda",
" modelling"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "e03d5bd87c4ce6f0e42a55d74a1dcca1ec2a35a75658cdfcd65e67e8c3df43cf",
"md5": "a5ad77fed5ce0ebaf2c2d5273a0c784a",
"sha256": "6aee58ee0bf6d682e39cdb0f59a9170a27094786e91be1fefc6dff5cca492fd0"
},
"downloads": -1,
"filename": "quantup_utils-1.1.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a5ad77fed5ce0ebaf2c2d5273a0c784a",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4,>=3.7",
"size": 50154,
"upload_time": "2025-02-01T10:26:04",
"upload_time_iso_8601": "2025-02-01T10:26:04.588170Z",
"url": "https://files.pythonhosted.org/packages/e0/3d/5bd87c4ce6f0e42a55d74a1dcca1ec2a35a75658cdfcd65e67e8c3df43cf/quantup_utils-1.1.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "5df2a76c174113b83fb14ee20886b76fba2387eb368eb08b869c7df8a3a9e841",
"md5": "dcab011cd11ca03bdbe1c0dfe9b0e929",
"sha256": "e76a57e524b263afe64c92d2e85eb353a33f09021761a3575c4174585986bc77"
},
"downloads": -1,
"filename": "quantup_utils-1.1.3.tar.gz",
"has_sig": false,
"md5_digest": "dcab011cd11ca03bdbe1c0dfe9b0e929",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4,>=3.7",
"size": 45212,
"upload_time": "2025-02-01T10:26:07",
"upload_time_iso_8601": "2025-02-01T10:26:07.163361Z",
"url": "https://files.pythonhosted.org/packages/5d/f2/a76c174113b83fb14ee20886b76fba2387eb368eb08b869c7df8a3a9e841/quantup_utils-1.1.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-01 10:26:07",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "QuantUp",
"github_project": "qutils",
"github_not_found": true,
"lcname": "quantup-utils"
}