questionnaire-mistral


Namequestionnaire-mistral JSON
Version 3.1 PyPI version JSON
download
home_pagehttps://github.com/skillfi/questionnairemistral
SummaryNone
upload_time2024-10-07 13:43:11
maintainerNone
docs_urlNone
authorAlex
requires_python>=3.8
licenseApache 2.0 License
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            MistralAI Questionnaire
=================================

This project provides a toolkit for generating questionnaire from documents: [``txt``, ``docx``, ``pdf``] to ``.csv`` dataset format.

Requirements
------------

Before starting, you need to install the following libraries:
 .. code-block:: python

  pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124

- ``langchain``
- ``langchain_community``
- ``langchain-huggingface``
- ``playwright``
- ``html2text``
- ``sentence_transformers``
- ``faiss-cpu``
- ``pandas``
- ``peft==0.4.0``
- ``trl==0.4.7``
- ``pypdf``
- ``bitsandbytes``
- ``accelerate``

Description
-----------

ModelManager
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This class is responsible for loading mistralai model and generating QA.

Constructor
^^^^^^^^^^^

.. code-block:: python

   __init__(self, model_name)

- **model_name**: The path or name of the pre-trained model.


Methods
^^^^^^^

- **setup_tokenizer()**: Loads and configures the tokenizer for the model.
- **setup_bitsandbytes_parameters()**: Configures parameters for bit quantization (BitsAndBytes).
- **from_pretrained()**: Loads the model with pre-trained weights and quantization configuration.
- **print_model_parameters(examples)**: Prints the number of trainable and total parameters of the model.
- **__call__(self, *args, **kwargs)**: The main method for running the generate tasks.

Usage
-----

To start generating QA, you should create an instance of the ``ModelManager`` class and call its ``__call__`` method, passing the necessary arguments.

.. code-block:: python
   from questionnaire_mistral.models import ModelManager
   model = ModelManager(model_name="path_to_model")
   model(document=document, task=task, document_content=document_content, task_count=task_count)

License
-------

The project is distributed under the MIT License.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/skillfi/questionnairemistral",
    "name": "questionnaire-mistral",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": null,
    "author": "Alex",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/29/6a/365fc60ea532448fa17dbe0ad3d370b3ba22ecda708e9047bcd6412126cc/questionnaire_mistral-3.1.tar.gz",
    "platform": null,
    "description": "MistralAI Questionnaire\n=================================\n\nThis project provides a toolkit for generating questionnaire from documents: [``txt``, ``docx``, ``pdf``] to ``.csv`` dataset format.\n\nRequirements\n------------\n\nBefore starting, you need to install the following libraries:\n .. code-block:: python\n\n  pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124\n\n- ``langchain``\n- ``langchain_community``\n- ``langchain-huggingface``\n- ``playwright``\n- ``html2text``\n- ``sentence_transformers``\n- ``faiss-cpu``\n- ``pandas``\n- ``peft==0.4.0``\n- ``trl==0.4.7``\n- ``pypdf``\n- ``bitsandbytes``\n- ``accelerate``\n\nDescription\n-----------\n\nModelManager\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\nThis class is responsible for loading mistralai model and generating QA.\n\nConstructor\n^^^^^^^^^^^\n\n.. code-block:: python\n\n   __init__(self, model_name)\n\n- **model_name**: The path or name of the pre-trained model.\n\n\nMethods\n^^^^^^^\n\n- **setup_tokenizer()**: Loads and configures the tokenizer for the model.\n- **setup_bitsandbytes_parameters()**: Configures parameters for bit quantization (BitsAndBytes).\n- **from_pretrained()**: Loads the model with pre-trained weights and quantization configuration.\n- **print_model_parameters(examples)**: Prints the number of trainable and total parameters of the model.\n- **__call__(self, *args, **kwargs)**: The main method for running the generate tasks.\n\nUsage\n-----\n\nTo start generating QA, you should create an instance of the ``ModelManager`` class and call its ``__call__`` method, passing the necessary arguments.\n\n.. code-block:: python\n   from questionnaire_mistral.models import ModelManager\n   model = ModelManager(model_name=\"path_to_model\")\n   model(document=document, task=task, document_content=document_content, task_count=task_count)\n\nLicense\n-------\n\nThe project is distributed under the MIT License.\n",
    "bugtrack_url": null,
    "license": "Apache 2.0 License",
    "summary": null,
    "version": "3.1",
    "project_urls": {
        "Homepage": "https://github.com/skillfi/questionnairemistral"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2137188cfc2c3b3523be5e6ecd2819cf8b30d53a5ba9a6d701edebccab819970",
                "md5": "4a208c1df22e4ea32152063bad21d714",
                "sha256": "946e42b63053bdc0e6f070631addad81b0e42e78f011dc0072e24d24c22d1c04"
            },
            "downloads": -1,
            "filename": "questionnaire_mistral-3.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "4a208c1df22e4ea32152063bad21d714",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 9524,
            "upload_time": "2024-10-07T13:43:09",
            "upload_time_iso_8601": "2024-10-07T13:43:09.874768Z",
            "url": "https://files.pythonhosted.org/packages/21/37/188cfc2c3b3523be5e6ecd2819cf8b30d53a5ba9a6d701edebccab819970/questionnaire_mistral-3.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "296a365fc60ea532448fa17dbe0ad3d370b3ba22ecda708e9047bcd6412126cc",
                "md5": "c1ca963266847f6cf9d8a567803788ba",
                "sha256": "f7a681a17bb83dbe8e4faae8232c3179614226ff76030861ce2c5ddf458d5599"
            },
            "downloads": -1,
            "filename": "questionnaire_mistral-3.1.tar.gz",
            "has_sig": false,
            "md5_digest": "c1ca963266847f6cf9d8a567803788ba",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 9441,
            "upload_time": "2024-10-07T13:43:11",
            "upload_time_iso_8601": "2024-10-07T13:43:11.852779Z",
            "url": "https://files.pythonhosted.org/packages/29/6a/365fc60ea532448fa17dbe0ad3d370b3ba22ecda708e9047bcd6412126cc/questionnaire_mistral-3.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-07 13:43:11",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "skillfi",
    "github_project": "questionnairemistral",
    "github_not_found": true,
    "lcname": "questionnaire-mistral"
}
        
Elapsed time: 6.63630s