## Quick CSV
Read and write small or large CSV/TXT files in a simple manner
### Installation
```pip
pip install quick-csv
```
### Examples for small files
Example 1: read and write csv or txt files
```python
from quickcsv.file import *
# read a csv file
list_model=read_csv('data/test.csv')
for idx,model in enumerate(list_model):
print(model)
list_model[idx]['id']=idx
# save a csv file
write_csv('data/test1.csv',list_model)
# write a text file
write_text('data/text1.txt',"Hello World!")
# read a text file
print(read_text('data/text1.txt'))
```
Example 2: create dataframe from a list of models
```python
from quickcsv.file import *
# read a csv file
list_model=read_csv('data/test.csv')
# create a dataframe from list_model
df=create_df(list_model)
# print
print(df)
```
### Examples for large files
Example 1: read large csv file
```python
from quickcsv.largefile import *
if __name__=="__main__":
csv_path=r"umls_atui_rels.csv" # a large file (>500 MB)
total_count=0
def process_partition(part_df,i):
print(f"Part {i}")
def process_row(row,i):
global total_count
print(i)
total_count+=1
list_results=read_large_csv(csv_file=csv_path,row_func=process_row,partition_func=process_partition)
print("Return: ")
print(list_results)
print("Total Record Num: ",total_count)
```
Example 2: query from a large csv file
```python
from quickcsv.largefile import *
if __name__=="__main__":
csv_path=r"umls_sui_nodes.csv" # a large file (>500 MB)
total_count=0
# process each partition in the large file
def process_partition(part_df,i):
print(f"Part {i}")
print()
# process each row in a partition while reading
def process_row(row,i):
global total_count
print(row)
total_count+=1
# field is a field in the csv file, and value is the value you need to find within the csv file
list_results=read_large_csv(csv_file=csv_path, field="SUI",value="S0000004", append_row=True, row_func=process_row,partition_func=process_partition)
print("Return: ")
print(list_results)
print("Total Record Num: ",total_count)
```
Example 3: read top N records from the large csv file
```python
from quickcsv.largefile import *
if __name__=="__main__":
csv_path=r"umls_atui_rels.csv"
total_count=0
# return top 10 rows in the csv file
list_results=read_large_csv(csv_file=csv_path,head_num=10)
print("Return: ")
print(list_results)
print("Total Record Num: ",total_count)
```
### License
The `quick-csv` project is provided by [Donghua Chen](https://github.com/dhchenx).
Raw data
{
"_id": null,
"home_page": "https://github.com/dhchenx/quick-csv",
"name": "quick-csv",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6, <4",
"maintainer_email": "",
"keywords": "csv file,txt file,write,read,quick-csv,quickcsv",
"author": "Donghua Chen",
"author_email": "douglaschan@126.com",
"download_url": "https://files.pythonhosted.org/packages/ce/8c/b2c6ada29f6f37875cf558d3813e05b880af968f34ddc45b1b508c2d5ee6/quick-csv-0.0.5.tar.gz",
"platform": null,
"description": "## Quick CSV\n\nRead and write small or large CSV/TXT files in a simple manner\n\n### Installation\n```pip\npip install quick-csv\n```\n\n### Examples for small files\nExample 1: read and write csv or txt files\n```python\nfrom quickcsv.file import *\n# read a csv file\nlist_model=read_csv('data/test.csv')\nfor idx,model in enumerate(list_model):\n print(model)\n list_model[idx]['id']=idx\n# save a csv file\nwrite_csv('data/test1.csv',list_model)\n\n# write a text file\nwrite_text('data/text1.txt',\"Hello World!\")\n# read a text file\nprint(read_text('data/text1.txt'))\n```\nExample 2: create dataframe from a list of models\n```python\nfrom quickcsv.file import *\n# read a csv file\nlist_model=read_csv('data/test.csv')\n# create a dataframe from list_model\ndf=create_df(list_model)\n# print\nprint(df)\n```\n\n### Examples for large files\nExample 1: read large csv file\n```python\nfrom quickcsv.largefile import *\nif __name__==\"__main__\":\n csv_path=r\"umls_atui_rels.csv\" # a large file (>500 MB)\n total_count=0\n\n def process_partition(part_df,i):\n print(f\"Part {i}\")\n\n def process_row(row,i):\n global total_count\n print(i)\n total_count+=1\n\n list_results=read_large_csv(csv_file=csv_path,row_func=process_row,partition_func=process_partition)\n\n print(\"Return: \")\n print(list_results)\n\n print(\"Total Record Num: \",total_count)\n\n```\n\nExample 2: query from a large csv file\n```python\nfrom quickcsv.largefile import *\n\nif __name__==\"__main__\":\n csv_path=r\"umls_sui_nodes.csv\" # a large file (>500 MB)\n total_count=0\n # process each partition in the large file\n def process_partition(part_df,i):\n print(f\"Part {i}\")\n print()\n # process each row in a partition while reading\n def process_row(row,i):\n global total_count\n print(row)\n total_count+=1\n # field is a field in the csv file, and value is the value you need to find within the csv file\n list_results=read_large_csv(csv_file=csv_path, field=\"SUI\",value=\"S0000004\", append_row=True, row_func=process_row,partition_func=process_partition)\n\n print(\"Return: \")\n print(list_results)\n\n print(\"Total Record Num: \",total_count)\n```\n\nExample 3: read top N records from the large csv file\n```python\nfrom quickcsv.largefile import *\n\nif __name__==\"__main__\":\n csv_path=r\"umls_atui_rels.csv\"\n total_count=0\n # return top 10 rows in the csv file\n list_results=read_large_csv(csv_file=csv_path,head_num=10)\n\n print(\"Return: \")\n print(list_results)\n\n print(\"Total Record Num: \",total_count)\n```\n\n### License\n\nThe `quick-csv` project is provided by [Donghua Chen](https://github.com/dhchenx). \n\n\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Read and write CSV or TXT files in a simple manner",
"version": "0.0.5",
"project_urls": {
"Bug Reports": "https://github.com/dhchenx/quick-csv/issues",
"Homepage": "https://github.com/dhchenx/quick-csv",
"Source": "https://github.com/dhchenx/quick-csv"
},
"split_keywords": [
"csv file",
"txt file",
"write",
"read",
"quick-csv",
"quickcsv"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "3eae2ae08479b33e6c05da9e9034d13d3166abf9bac88273f0387a1c0c63a896",
"md5": "981eaa46be93dbe5ac49af61ea3b27fe",
"sha256": "c1f80629677ef3416234716bc085eea79c5af9842b9c9b6783f657aed952a3fe"
},
"downloads": -1,
"filename": "quick_csv-0.0.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "981eaa46be93dbe5ac49af61ea3b27fe",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6, <4",
"size": 11793,
"upload_time": "2022-08-30T09:58:08",
"upload_time_iso_8601": "2022-08-30T09:58:08.759990Z",
"url": "https://files.pythonhosted.org/packages/3e/ae/2ae08479b33e6c05da9e9034d13d3166abf9bac88273f0387a1c0c63a896/quick_csv-0.0.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ce8cb2c6ada29f6f37875cf558d3813e05b880af968f34ddc45b1b508c2d5ee6",
"md5": "1218f2fc6f4a4f113a75ed6a3cb3c636",
"sha256": "1b8919350268c6e59cd905941afd1e05b2a4c3a3cf46109a42bee54e73074dcb"
},
"downloads": -1,
"filename": "quick-csv-0.0.5.tar.gz",
"has_sig": false,
"md5_digest": "1218f2fc6f4a4f113a75ed6a3cb3c636",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6, <4",
"size": 12690,
"upload_time": "2022-08-30T09:58:17",
"upload_time_iso_8601": "2022-08-30T09:58:17.284883Z",
"url": "https://files.pythonhosted.org/packages/ce/8c/b2c6ada29f6f37875cf558d3813e05b880af968f34ddc45b1b508c2d5ee6/quick-csv-0.0.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-08-30 09:58:17",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "dhchenx",
"github_project": "quick-csv",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "quick-csv"
}