#a pipeline for quick data analysis and machine learning
##file_operate:
***
--------
> <u>__*~~123~~*__</u>
* read file and do base operate like auto asdtype etc.
* it support multi type files operates together.
##preprocess:
create a preprocessor to preprocessing(dropna,fillna,dropoutlyers...)
you can select the file and cols by passing dict-type args.
##analysis:
base on the previous manipulations,we get clean datas,we can now acutally start the analysis tasks:
correlation:
get correlations between value-type features and labels.
compare the correlation between class-type features and labels.
##modeling:
we provide base ml models to complete classification or regression tasks
listing:
gbdt:xgboost,light gbm,radom forests
norm:svc,linear,logistic,bayes
timesequence:ARMA,ARIMA
nn:
DeepLearning:\
statistic_test:
[//]: # ( [test func](https://blog.csdn.net/weixin_46271668/article/details/123981051))
normality test
correlation test
significance test
parametric test
nonparametric test
| 表头 | 表头 |
| ---- | ---- |
| 单元格 | 单元格 |
| 单元格 | 单元格 |
![alt 属性文本](C:\Users\23920\Desktop\avatar.jpg)
Raw data
{
"_id": null,
"home_page": "https://github.com/yasuo626/QuickPanda",
"name": "quickpanda-aidroid",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": "",
"keywords": "computer vision",
"author": "aidroid",
"author_email": "Example Author <author@example.com>",
"download_url": "https://files.pythonhosted.org/packages/a2/96/b7d68691ae7637d7058b3a0e365be11a8bf0e9b9abcf394454779a37df39/quickpanda_aidroid-0.0.1.tar.gz",
"platform": null,
"description": "#a pipeline for quick data analysis and machine learning\r\n\r\n##file_operate:\r\n\r\n***\r\n--------\r\n> <u>__*~~123~~*__</u>\r\n\r\n* read file and do base operate like auto asdtype etc.\r\n* it support multi type files operates together.\r\n\r\n##preprocess:\r\n\r\n create a preprocessor to preprocessing(dropna,fillna,dropoutlyers...)\r\n you can select the file and cols by passing dict-type args.\r\n##analysis:\r\n base on the previous manipulations,we get clean datas,we can now acutally start the analysis tasks:\r\n correlation:\r\n get correlations between value-type features and labels. \r\n compare the correlation between class-type features and labels.\r\n \r\n\r\n##modeling:\r\n we provide base ml models to complete classification or regression tasks\r\n listing:\r\n gbdt:xgboost,light gbm,radom forests\r\n norm:svc,linear,logistic,bayes\r\n timesequence:ARMA,ARIMA\r\n nn:\r\n DeepLearning:\\\r\n\r\nstatistic_test:\r\n\r\n[//]: # ( [test func](https://blog.csdn.net/weixin_46271668/article/details/123981051))\r\n\r\n normality test\r\n correlation test\r\n significance test\r\n parametric test\r\n nonparametric test\r\n\r\n| \u8868\u5934 | \u8868\u5934 |\r\n| ---- | ---- |\r\n| \u5355\u5143\u683c | \u5355\u5143\u683c |\r\n| \u5355\u5143\u683c | \u5355\u5143\u683c |\r\n![alt \u5c5e\u6027\u6587\u672c](C:\\Users\\23920\\Desktop\\avatar.jpg)\r\n",
"bugtrack_url": null,
"license": "",
"summary": "quick analysis and dataanalysis pipleline",
"version": "0.0.1",
"project_urls": {
"Bug Tracker": "https://github.com/pypa/sampleproject/issues",
"Homepage": "https://github.com/pypa/sampleproject"
},
"split_keywords": [
"computer",
"vision"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "fc343e04e71c69f9675d1c4182a4fbd0f35e796391689b6de33e9bae8152511a",
"md5": "f46c4e831b7423641585a8e0074e8d0e",
"sha256": "8a97c3cc23b742467af338895a2a45abeffbe3b6e154e48e0c0e9fd7d9b30938"
},
"downloads": -1,
"filename": "quickpanda_aidroid-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "f46c4e831b7423641585a8e0074e8d0e",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 18783,
"upload_time": "2023-05-13T06:42:05",
"upload_time_iso_8601": "2023-05-13T06:42:05.711020Z",
"url": "https://files.pythonhosted.org/packages/fc/34/3e04e71c69f9675d1c4182a4fbd0f35e796391689b6de33e9bae8152511a/quickpanda_aidroid-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a296b7d68691ae7637d7058b3a0e365be11a8bf0e9b9abcf394454779a37df39",
"md5": "72bfc35615099f1629f1ce87af328c4c",
"sha256": "04788f631c8e13663037f205283e33ce1a9a96bf0b36e18f0503fa36fd8fcfa9"
},
"downloads": -1,
"filename": "quickpanda_aidroid-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "72bfc35615099f1629f1ce87af328c4c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 18513,
"upload_time": "2023-05-13T06:43:55",
"upload_time_iso_8601": "2023-05-13T06:43:55.669395Z",
"url": "https://files.pythonhosted.org/packages/a2/96/b7d68691ae7637d7058b3a0e365be11a8bf0e9b9abcf394454779a37df39/quickpanda_aidroid-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-05-13 06:43:55",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "yasuo626",
"github_project": "QuickPanda",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "quickpanda-aidroid"
}