![quimb logo](https://github.com/jcmgray/quimb/blob/HEAD/docs/_static/logo-banner.png?raw=true)
[![Tests](https://github.com/jcmgray/quimb/actions/workflows/tests.yml/badge.svg)](https://github.com/jcmgray/quimb/actions/workflows/tests.yml)
[![Code Coverage](https://codecov.io/gh/jcmgray/quimb/branch/main/graph/badge.svg)](https://codecov.io/gh/jcmgray/quimb)
[![Code Quality](https://app.codacy.com/project/badge/Grade/3c7462a3c45f41fd9d8f0a746a65c37c)](https://www.codacy.com/gh/jcmgray/quimb/dashboard?utm_source=github.com&utm_medium=referral&utm_content=jcmgray/quimb&utm_campaign=Badge_Grade)
[![Documentation Status](https://readthedocs.org/projects/quimb/badge/?version=latest)](http://quimb.readthedocs.io/en/latest/?badge=latest)
[![JOSS Paper](http://joss.theoj.org/papers/10.21105/joss.00819/status.svg)](https://doi.org/10.21105/joss.00819)
[![PyPI](https://img.shields.io/pypi/v/quimb?color=teal)](https://pypi.org/project/quimb/)
[![Anaconda-Server Badge](https://anaconda.org/conda-forge/quimb/badges/version.svg)](https://anaconda.org/conda-forge/quimb)
[`quimb`](https://github.com/jcmgray/quimb) is an easy but fast python library for *'quantum information many-body'* calculations, focusing primarily on **tensor networks**. The code is hosted on [github](https://github.com/jcmgray/quimb), and docs are hosted on [readthedocs](http://quimb.readthedocs.io/en/latest/). Functionality is split in two:
---
The `quimb.tensor` module contains tools for working with **tensors and tensor networks**. It has a particular focus on automatically handling arbitrary geometry, e.g. beyond 1D and 2D lattices. With this you can:
- construct and manipulate arbitrary (hyper) graphs of tensor networks
- automatically [contract](https://cotengra.readthedocs.io), optimize and draw networks
- use various backend array libraries such as [jax](https://jax.readthedocs.io) and [torch](https://pytorch.org/) via [autoray](https://github.com/jcmgray/autoray/)
- run specific MPS, PEPS, MERA and quantum circuit algorithms, such as DMRG & TEBD
![tensor pic](https://github.com/jcmgray/quimb/blob/HEAD/docs/_static/rand-tensor.svg?raw=true)
---
The core `quimb` module contains tools for reference **'exact'** quantum calculations, where the states and operator are represented as either `numpy.ndarray` or `scipy.sparse` **matrices**. With this you can:
- construct operators in complicated tensor spaces
- find groundstates, excited states and do time evolutions, including with [slepc](https://slepc.upv.es/)
- compute various quantities including entanglement measures
- take advantage of [numba](https://numba.pydata.org) accelerations
- stochastically estimate $\mathrm{Tr}f(X)$ quantities
![matrix pic](https://github.com/jcmgray/quimb/blob/HEAD/docs/_static/rand-herm-matrix.svg?raw=true)
---
The **full documentation** can be found at: [quimb.readthedocs.io](https://quimb.readthedocs.io). Contributions of any sort are very welcome - please see the [contributing guide](https://github.com/jcmgray/quimb/blob/main/.github/CONTRIBUTING.md). [Issues](https://github.com/jcmgray/quimb/issues) and [pull requests](https://github.com/jcmgray/quimb/pulls) are hosted on [github](https://github.com/jcmgray/quimb). For other questions and suggestions, please use the [discussions page](https://github.com/jcmgray/quimb/discussions).
Raw data
{
"_id": null,
"home_page": "http://quimb.readthedocs.io",
"name": "quimb",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "quantum physics tensor networks tensors dmrg tebd",
"author": "Johnnie Gray",
"author_email": "johnniemcgray@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/b5/52/a57ee91fb32abe3d98fed8b740a0a05ca06cb0f54f69da816680110419bd/quimb-1.8.4.tar.gz",
"platform": null,
"description": "![quimb logo](https://github.com/jcmgray/quimb/blob/HEAD/docs/_static/logo-banner.png?raw=true)\n\n[![Tests](https://github.com/jcmgray/quimb/actions/workflows/tests.yml/badge.svg)](https://github.com/jcmgray/quimb/actions/workflows/tests.yml)\n[![Code Coverage](https://codecov.io/gh/jcmgray/quimb/branch/main/graph/badge.svg)](https://codecov.io/gh/jcmgray/quimb)\n[![Code Quality](https://app.codacy.com/project/badge/Grade/3c7462a3c45f41fd9d8f0a746a65c37c)](https://www.codacy.com/gh/jcmgray/quimb/dashboard?utm_source=github.com&utm_medium=referral&utm_content=jcmgray/quimb&utm_campaign=Badge_Grade)\n[![Documentation Status](https://readthedocs.org/projects/quimb/badge/?version=latest)](http://quimb.readthedocs.io/en/latest/?badge=latest)\n[![JOSS Paper](http://joss.theoj.org/papers/10.21105/joss.00819/status.svg)](https://doi.org/10.21105/joss.00819)\n[![PyPI](https://img.shields.io/pypi/v/quimb?color=teal)](https://pypi.org/project/quimb/)\n[![Anaconda-Server Badge](https://anaconda.org/conda-forge/quimb/badges/version.svg)](https://anaconda.org/conda-forge/quimb)\n\n[`quimb`](https://github.com/jcmgray/quimb) is an easy but fast python library for *'quantum information many-body'* calculations, focusing primarily on **tensor networks**. The code is hosted on [github](https://github.com/jcmgray/quimb), and docs are hosted on [readthedocs](http://quimb.readthedocs.io/en/latest/). Functionality is split in two:\n\n---\n\nThe `quimb.tensor` module contains tools for working with **tensors and tensor networks**. It has a particular focus on automatically handling arbitrary geometry, e.g. beyond 1D and 2D lattices. With this you can:\n\n- construct and manipulate arbitrary (hyper) graphs of tensor networks\n- automatically [contract](https://cotengra.readthedocs.io), optimize and draw networks\n- use various backend array libraries such as [jax](https://jax.readthedocs.io) and [torch](https://pytorch.org/) via [autoray](https://github.com/jcmgray/autoray/)\n- run specific MPS, PEPS, MERA and quantum circuit algorithms, such as DMRG & TEBD\n\n![tensor pic](https://github.com/jcmgray/quimb/blob/HEAD/docs/_static/rand-tensor.svg?raw=true)\n\n---\n\nThe core `quimb` module contains tools for reference **'exact'** quantum calculations, where the states and operator are represented as either `numpy.ndarray` or `scipy.sparse` **matrices**. With this you can:\n\n- construct operators in complicated tensor spaces\n- find groundstates, excited states and do time evolutions, including with [slepc](https://slepc.upv.es/)\n- compute various quantities including entanglement measures\n- take advantage of [numba](https://numba.pydata.org) accelerations\n- stochastically estimate $\\mathrm{Tr}f(X)$ quantities\n\n![matrix pic](https://github.com/jcmgray/quimb/blob/HEAD/docs/_static/rand-herm-matrix.svg?raw=true)\n\n---\n\nThe **full documentation** can be found at: [quimb.readthedocs.io](https://quimb.readthedocs.io). Contributions of any sort are very welcome - please see the [contributing guide](https://github.com/jcmgray/quimb/blob/main/.github/CONTRIBUTING.md). [Issues](https://github.com/jcmgray/quimb/issues) and [pull requests](https://github.com/jcmgray/quimb/pulls) are hosted on [github](https://github.com/jcmgray/quimb). For other questions and suggestions, please use the [discussions page](https://github.com/jcmgray/quimb/discussions).\n",
"bugtrack_url": null,
"license": "Apache",
"summary": "Quantum information and many-body library.",
"version": "1.8.4",
"project_urls": {
"Homepage": "http://quimb.readthedocs.io"
},
"split_keywords": [
"quantum",
"physics",
"tensor",
"networks",
"tensors",
"dmrg",
"tebd"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "1204d4d451f3a6b710baafc881ccfed4d793ba23d78a5f712c0b798af2d751a9",
"md5": "dcd59ac32e028a02ca7680166e137a84",
"sha256": "357c42c5c1a696ba8234e1d7e1361aabc182ac76ff046a85fabb37f63d989d2d"
},
"downloads": -1,
"filename": "quimb-1.8.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "dcd59ac32e028a02ca7680166e137a84",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 541642,
"upload_time": "2024-07-20T21:02:01",
"upload_time_iso_8601": "2024-07-20T21:02:01.986026Z",
"url": "https://files.pythonhosted.org/packages/12/04/d4d451f3a6b710baafc881ccfed4d793ba23d78a5f712c0b798af2d751a9/quimb-1.8.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b552a57ee91fb32abe3d98fed8b740a0a05ca06cb0f54f69da816680110419bd",
"md5": "35140aa9810d3ea2b1458553012731f4",
"sha256": "51b7b6f09a451f44468d7b41ac990635b2e718b437aee8db992f892c3e5d30b5"
},
"downloads": -1,
"filename": "quimb-1.8.4.tar.gz",
"has_sig": false,
"md5_digest": "35140aa9810d3ea2b1458553012731f4",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 11480868,
"upload_time": "2024-07-20T21:02:04",
"upload_time_iso_8601": "2024-07-20T21:02:04.222932Z",
"url": "https://files.pythonhosted.org/packages/b5/52/a57ee91fb32abe3d98fed8b740a0a05ca06cb0f54f69da816680110419bd/quimb-1.8.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-20 21:02:04",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "quimb"
}