![quimb logo](https://github.com/jcmgray/quimb/blob/HEAD/docs/_static/logo-banner.png?raw=true)
[![Tests](https://github.com/jcmgray/quimb/actions/workflows/tests.yml/badge.svg)](https://github.com/jcmgray/quimb/actions/workflows/tests.yml)
[![Code Coverage](https://codecov.io/gh/jcmgray/quimb/branch/main/graph/badge.svg)](https://codecov.io/gh/jcmgray/quimb)
[![Code Quality](https://app.codacy.com/project/badge/Grade/3c7462a3c45f41fd9d8f0a746a65c37c)](https://www.codacy.com/gh/jcmgray/quimb/dashboard?utm_source=github.com&utm_medium=referral&utm_content=jcmgray/quimb&utm_campaign=Badge_Grade)
[![Documentation Status](https://readthedocs.org/projects/quimb/badge/?version=latest)](http://quimb.readthedocs.io/en/latest/?badge=latest)
[![JOSS Paper](http://joss.theoj.org/papers/10.21105/joss.00819/status.svg)](https://doi.org/10.21105/joss.00819)
[![PyPI](https://img.shields.io/pypi/v/quimb?color=teal)](https://pypi.org/project/quimb/)
[![Anaconda-Server Badge](https://anaconda.org/conda-forge/quimb/badges/version.svg)](https://anaconda.org/conda-forge/quimb)
[`quimb`](https://github.com/jcmgray/quimb) is an easy but fast python library for *'quantum information many-body'* calculations, focusing primarily on **tensor networks**. The code is hosted on [github](https://github.com/jcmgray/quimb), and docs are hosted on [readthedocs](http://quimb.readthedocs.io/en/latest/). Functionality is split in two:
---
The `quimb.tensor` module contains tools for working with **tensors and tensor networks**. It has a particular focus on automatically handling arbitrary geometry, e.g. beyond 1D and 2D lattices. With this you can:
- construct and manipulate arbitrary (hyper) graphs of tensor networks
- automatically [contract](https://cotengra.readthedocs.io), optimize and draw networks
- use various backend array libraries such as [jax](https://jax.readthedocs.io) and [torch](https://pytorch.org/) via [autoray](https://github.com/jcmgray/autoray/)
- run specific MPS, PEPS, MERA and quantum circuit algorithms, such as DMRG & TEBD
![tensor pic](https://github.com/jcmgray/quimb/blob/HEAD/docs/_static/rand-tensor.svg?raw=true)
---
The core `quimb` module contains tools for reference **'exact'** quantum calculations, where the states and operator are represented as either `numpy.ndarray` or `scipy.sparse` **matrices**. With this you can:
- construct operators in complicated tensor spaces
- find groundstates, excited states and do time evolutions, including with [slepc](https://slepc.upv.es/)
- compute various quantities including entanglement measures
- take advantage of [numba](https://numba.pydata.org) accelerations
- stochastically estimate $\mathrm{Tr}f(X)$ quantities
![matrix pic](https://github.com/jcmgray/quimb/blob/HEAD/docs/_static/rand-herm-matrix.svg?raw=true)
---
The **full documentation** can be found at: [quimb.readthedocs.io](https://quimb.readthedocs.io). Contributions of any sort are very welcome - please see the [contributing guide](https://github.com/jcmgray/quimb/blob/main/.github/CONTRIBUTING.md). [Issues](https://github.com/jcmgray/quimb/issues) and [pull requests](https://github.com/jcmgray/quimb/pulls) are hosted on [github](https://github.com/jcmgray/quimb). For other questions and suggestions, please use the [discussions page](https://github.com/jcmgray/quimb/discussions).
Raw data
{
"_id": null,
"home_page": null,
"name": "quimb",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "dmrg, mera, networks, peps, physics, quantum, tebd, tensor, tensors",
"author": null,
"author_email": "Johnnie Gray <johnniemcgray@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/aa/e9/96cbbb27a9689b2e6fa484b6226bcff6c520c75b49c0a615f2131323f49d/quimb-1.10.0.tar.gz",
"platform": null,
"description": "![quimb logo](https://github.com/jcmgray/quimb/blob/HEAD/docs/_static/logo-banner.png?raw=true)\n\n[![Tests](https://github.com/jcmgray/quimb/actions/workflows/tests.yml/badge.svg)](https://github.com/jcmgray/quimb/actions/workflows/tests.yml)\n[![Code Coverage](https://codecov.io/gh/jcmgray/quimb/branch/main/graph/badge.svg)](https://codecov.io/gh/jcmgray/quimb)\n[![Code Quality](https://app.codacy.com/project/badge/Grade/3c7462a3c45f41fd9d8f0a746a65c37c)](https://www.codacy.com/gh/jcmgray/quimb/dashboard?utm_source=github.com&utm_medium=referral&utm_content=jcmgray/quimb&utm_campaign=Badge_Grade)\n[![Documentation Status](https://readthedocs.org/projects/quimb/badge/?version=latest)](http://quimb.readthedocs.io/en/latest/?badge=latest)\n[![JOSS Paper](http://joss.theoj.org/papers/10.21105/joss.00819/status.svg)](https://doi.org/10.21105/joss.00819)\n[![PyPI](https://img.shields.io/pypi/v/quimb?color=teal)](https://pypi.org/project/quimb/)\n[![Anaconda-Server Badge](https://anaconda.org/conda-forge/quimb/badges/version.svg)](https://anaconda.org/conda-forge/quimb)\n\n[`quimb`](https://github.com/jcmgray/quimb) is an easy but fast python library for *'quantum information many-body'* calculations, focusing primarily on **tensor networks**. The code is hosted on [github](https://github.com/jcmgray/quimb), and docs are hosted on [readthedocs](http://quimb.readthedocs.io/en/latest/). Functionality is split in two:\n\n---\n\nThe `quimb.tensor` module contains tools for working with **tensors and tensor networks**. It has a particular focus on automatically handling arbitrary geometry, e.g. beyond 1D and 2D lattices. With this you can:\n\n- construct and manipulate arbitrary (hyper) graphs of tensor networks\n- automatically [contract](https://cotengra.readthedocs.io), optimize and draw networks\n- use various backend array libraries such as [jax](https://jax.readthedocs.io) and [torch](https://pytorch.org/) via [autoray](https://github.com/jcmgray/autoray/)\n- run specific MPS, PEPS, MERA and quantum circuit algorithms, such as DMRG & TEBD\n\n![tensor pic](https://github.com/jcmgray/quimb/blob/HEAD/docs/_static/rand-tensor.svg?raw=true)\n\n---\n\nThe core `quimb` module contains tools for reference **'exact'** quantum calculations, where the states and operator are represented as either `numpy.ndarray` or `scipy.sparse` **matrices**. With this you can:\n\n- construct operators in complicated tensor spaces\n- find groundstates, excited states and do time evolutions, including with [slepc](https://slepc.upv.es/)\n- compute various quantities including entanglement measures\n- take advantage of [numba](https://numba.pydata.org) accelerations\n- stochastically estimate $\\mathrm{Tr}f(X)$ quantities\n\n![matrix pic](https://github.com/jcmgray/quimb/blob/HEAD/docs/_static/rand-herm-matrix.svg?raw=true)\n\n---\n\nThe **full documentation** can be found at: [quimb.readthedocs.io](https://quimb.readthedocs.io). Contributions of any sort are very welcome - please see the [contributing guide](https://github.com/jcmgray/quimb/blob/main/.github/CONTRIBUTING.md). [Issues](https://github.com/jcmgray/quimb/issues) and [pull requests](https://github.com/jcmgray/quimb/pulls) are hosted on [github](https://github.com/jcmgray/quimb). For other questions and suggestions, please use the [discussions page](https://github.com/jcmgray/quimb/discussions).",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Quantum information and many-body library.",
"version": "1.10.0",
"project_urls": {
"Changelog": "https://quimb.readthedocs.io/en/latest/changelog.html",
"Documentation": "https://quimb.readthedocs.io/",
"Issues": "https://github.com/jcmgray/quimb/issues",
"Repository": "https://github.com/jcmgray/quimb/"
},
"split_keywords": [
"dmrg",
" mera",
" networks",
" peps",
" physics",
" quantum",
" tebd",
" tensor",
" tensors"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "3860463095864b740c1731365f119e663d9f821b5f482362187921a64a8f9175",
"md5": "36e60723802791d1ac0f3feca6b281b7",
"sha256": "4d270e71c9f03a4a41862682fbffcd076c61d7e40c4b3785a31ae869ce8830c4"
},
"downloads": -1,
"filename": "quimb-1.10.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "36e60723802791d1ac0f3feca6b281b7",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 1746891,
"upload_time": "2024-12-18T23:50:39",
"upload_time_iso_8601": "2024-12-18T23:50:39.836545Z",
"url": "https://files.pythonhosted.org/packages/38/60/463095864b740c1731365f119e663d9f821b5f482362187921a64a8f9175/quimb-1.10.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "aae996cbbb27a9689b2e6fa484b6226bcff6c520c75b49c0a615f2131323f49d",
"md5": "151f153533519efccd515c791b0887c3",
"sha256": "e79f1be2f9895d966479ccabbd5ec087fc047baad83d3fb08fed264e2d7cc3ff"
},
"downloads": -1,
"filename": "quimb-1.10.0.tar.gz",
"has_sig": false,
"md5_digest": "151f153533519efccd515c791b0887c3",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 11495275,
"upload_time": "2024-12-18T23:50:43",
"upload_time_iso_8601": "2024-12-18T23:50:43.534664Z",
"url": "https://files.pythonhosted.org/packages/aa/e9/96cbbb27a9689b2e6fa484b6226bcff6c520c75b49c0a615f2131323f49d/quimb-1.10.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-18 23:50:43",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "jcmgray",
"github_project": "quimb",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "quimb"
}