quimb


Namequimb JSON
Version 1.10.0 PyPI version JSON
download
home_pageNone
SummaryQuantum information and many-body library.
upload_time2024-12-18 23:50:43
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseApache-2.0
keywords dmrg mera networks peps physics quantum tebd tensor tensors
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ![quimb logo](https://github.com/jcmgray/quimb/blob/HEAD/docs/_static/logo-banner.png?raw=true)

[![Tests](https://github.com/jcmgray/quimb/actions/workflows/tests.yml/badge.svg)](https://github.com/jcmgray/quimb/actions/workflows/tests.yml)
[![Code Coverage](https://codecov.io/gh/jcmgray/quimb/branch/main/graph/badge.svg)](https://codecov.io/gh/jcmgray/quimb)
[![Code Quality](https://app.codacy.com/project/badge/Grade/3c7462a3c45f41fd9d8f0a746a65c37c)](https://www.codacy.com/gh/jcmgray/quimb/dashboard?utm_source=github.com&utm_medium=referral&utm_content=jcmgray/quimb&utm_campaign=Badge_Grade)
[![Documentation Status](https://readthedocs.org/projects/quimb/badge/?version=latest)](http://quimb.readthedocs.io/en/latest/?badge=latest)
[![JOSS Paper](http://joss.theoj.org/papers/10.21105/joss.00819/status.svg)](https://doi.org/10.21105/joss.00819)
[![PyPI](https://img.shields.io/pypi/v/quimb?color=teal)](https://pypi.org/project/quimb/)
[![Anaconda-Server Badge](https://anaconda.org/conda-forge/quimb/badges/version.svg)](https://anaconda.org/conda-forge/quimb)

[`quimb`](https://github.com/jcmgray/quimb) is an easy but fast python library for *'quantum information many-body'* calculations, focusing primarily on **tensor networks**. The code is hosted on [github](https://github.com/jcmgray/quimb), and docs are hosted on [readthedocs](http://quimb.readthedocs.io/en/latest/). Functionality is split in two:

---

The `quimb.tensor` module contains tools for working with **tensors and tensor networks**. It has a particular focus on automatically handling arbitrary geometry, e.g. beyond 1D and 2D lattices. With this you can:

- construct and manipulate arbitrary (hyper) graphs of tensor networks
- automatically [contract](https://cotengra.readthedocs.io), optimize and draw networks
- use various backend array libraries such as [jax](https://jax.readthedocs.io) and [torch](https://pytorch.org/) via [autoray](https://github.com/jcmgray/autoray/)
- run specific MPS, PEPS, MERA and quantum circuit algorithms, such as DMRG & TEBD

![tensor pic](https://github.com/jcmgray/quimb/blob/HEAD/docs/_static/rand-tensor.svg?raw=true)

---

The core `quimb` module contains tools for reference **'exact'** quantum calculations, where the states and operator are represented as either `numpy.ndarray` or `scipy.sparse` **matrices**. With this you can:

- construct operators in complicated tensor spaces
- find groundstates, excited states and do time evolutions, including with [slepc](https://slepc.upv.es/)
- compute various quantities including entanglement measures
- take advantage of [numba](https://numba.pydata.org) accelerations
- stochastically estimate $\mathrm{Tr}f(X)$ quantities

![matrix pic](https://github.com/jcmgray/quimb/blob/HEAD/docs/_static/rand-herm-matrix.svg?raw=true)

---

The **full documentation** can be found at: [quimb.readthedocs.io](https://quimb.readthedocs.io). Contributions of any sort are very welcome - please see the [contributing guide](https://github.com/jcmgray/quimb/blob/main/.github/CONTRIBUTING.md). [Issues](https://github.com/jcmgray/quimb/issues) and [pull requests](https://github.com/jcmgray/quimb/pulls) are hosted on [github](https://github.com/jcmgray/quimb). For other questions and suggestions, please use the [discussions page](https://github.com/jcmgray/quimb/discussions).
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "quimb",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "dmrg, mera, networks, peps, physics, quantum, tebd, tensor, tensors",
    "author": null,
    "author_email": "Johnnie Gray <johnniemcgray@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/aa/e9/96cbbb27a9689b2e6fa484b6226bcff6c520c75b49c0a615f2131323f49d/quimb-1.10.0.tar.gz",
    "platform": null,
    "description": "![quimb logo](https://github.com/jcmgray/quimb/blob/HEAD/docs/_static/logo-banner.png?raw=true)\n\n[![Tests](https://github.com/jcmgray/quimb/actions/workflows/tests.yml/badge.svg)](https://github.com/jcmgray/quimb/actions/workflows/tests.yml)\n[![Code Coverage](https://codecov.io/gh/jcmgray/quimb/branch/main/graph/badge.svg)](https://codecov.io/gh/jcmgray/quimb)\n[![Code Quality](https://app.codacy.com/project/badge/Grade/3c7462a3c45f41fd9d8f0a746a65c37c)](https://www.codacy.com/gh/jcmgray/quimb/dashboard?utm_source=github.com&amp;utm_medium=referral&amp;utm_content=jcmgray/quimb&amp;utm_campaign=Badge_Grade)\n[![Documentation Status](https://readthedocs.org/projects/quimb/badge/?version=latest)](http://quimb.readthedocs.io/en/latest/?badge=latest)\n[![JOSS Paper](http://joss.theoj.org/papers/10.21105/joss.00819/status.svg)](https://doi.org/10.21105/joss.00819)\n[![PyPI](https://img.shields.io/pypi/v/quimb?color=teal)](https://pypi.org/project/quimb/)\n[![Anaconda-Server Badge](https://anaconda.org/conda-forge/quimb/badges/version.svg)](https://anaconda.org/conda-forge/quimb)\n\n[`quimb`](https://github.com/jcmgray/quimb) is an easy but fast python library for *'quantum information many-body'* calculations, focusing primarily on **tensor networks**. The code is hosted on [github](https://github.com/jcmgray/quimb), and docs are hosted on [readthedocs](http://quimb.readthedocs.io/en/latest/). Functionality is split in two:\n\n---\n\nThe `quimb.tensor` module contains tools for working with **tensors and tensor networks**. It has a particular focus on automatically handling arbitrary geometry, e.g. beyond 1D and 2D lattices. With this you can:\n\n- construct and manipulate arbitrary (hyper) graphs of tensor networks\n- automatically [contract](https://cotengra.readthedocs.io), optimize and draw networks\n- use various backend array libraries such as [jax](https://jax.readthedocs.io) and [torch](https://pytorch.org/) via [autoray](https://github.com/jcmgray/autoray/)\n- run specific MPS, PEPS, MERA and quantum circuit algorithms, such as DMRG & TEBD\n\n![tensor pic](https://github.com/jcmgray/quimb/blob/HEAD/docs/_static/rand-tensor.svg?raw=true)\n\n---\n\nThe core `quimb` module contains tools for reference **'exact'** quantum calculations, where the states and operator are represented as either `numpy.ndarray` or `scipy.sparse` **matrices**. With this you can:\n\n- construct operators in complicated tensor spaces\n- find groundstates, excited states and do time evolutions, including with [slepc](https://slepc.upv.es/)\n- compute various quantities including entanglement measures\n- take advantage of [numba](https://numba.pydata.org) accelerations\n- stochastically estimate $\\mathrm{Tr}f(X)$ quantities\n\n![matrix pic](https://github.com/jcmgray/quimb/blob/HEAD/docs/_static/rand-herm-matrix.svg?raw=true)\n\n---\n\nThe **full documentation** can be found at: [quimb.readthedocs.io](https://quimb.readthedocs.io). Contributions of any sort are very welcome - please see the [contributing guide](https://github.com/jcmgray/quimb/blob/main/.github/CONTRIBUTING.md). [Issues](https://github.com/jcmgray/quimb/issues) and [pull requests](https://github.com/jcmgray/quimb/pulls) are hosted on [github](https://github.com/jcmgray/quimb). For other questions and suggestions, please use the [discussions page](https://github.com/jcmgray/quimb/discussions).",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Quantum information and many-body library.",
    "version": "1.10.0",
    "project_urls": {
        "Changelog": "https://quimb.readthedocs.io/en/latest/changelog.html",
        "Documentation": "https://quimb.readthedocs.io/",
        "Issues": "https://github.com/jcmgray/quimb/issues",
        "Repository": "https://github.com/jcmgray/quimb/"
    },
    "split_keywords": [
        "dmrg",
        " mera",
        " networks",
        " peps",
        " physics",
        " quantum",
        " tebd",
        " tensor",
        " tensors"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3860463095864b740c1731365f119e663d9f821b5f482362187921a64a8f9175",
                "md5": "36e60723802791d1ac0f3feca6b281b7",
                "sha256": "4d270e71c9f03a4a41862682fbffcd076c61d7e40c4b3785a31ae869ce8830c4"
            },
            "downloads": -1,
            "filename": "quimb-1.10.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "36e60723802791d1ac0f3feca6b281b7",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 1746891,
            "upload_time": "2024-12-18T23:50:39",
            "upload_time_iso_8601": "2024-12-18T23:50:39.836545Z",
            "url": "https://files.pythonhosted.org/packages/38/60/463095864b740c1731365f119e663d9f821b5f482362187921a64a8f9175/quimb-1.10.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "aae996cbbb27a9689b2e6fa484b6226bcff6c520c75b49c0a615f2131323f49d",
                "md5": "151f153533519efccd515c791b0887c3",
                "sha256": "e79f1be2f9895d966479ccabbd5ec087fc047baad83d3fb08fed264e2d7cc3ff"
            },
            "downloads": -1,
            "filename": "quimb-1.10.0.tar.gz",
            "has_sig": false,
            "md5_digest": "151f153533519efccd515c791b0887c3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 11495275,
            "upload_time": "2024-12-18T23:50:43",
            "upload_time_iso_8601": "2024-12-18T23:50:43.534664Z",
            "url": "https://files.pythonhosted.org/packages/aa/e9/96cbbb27a9689b2e6fa484b6226bcff6c520c75b49c0a615f2131323f49d/quimb-1.10.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-18 23:50:43",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "jcmgray",
    "github_project": "quimb",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "quimb"
}
        
Elapsed time: 0.39117s