# quotientai
[![PyPI version](https://img.shields.io/pypi/v/quotientai)](https://pypi.org/project/quotientai)
## Overview
`quotientai` is an SDK and CLI built to manage artifacts (prompts, datasets), and run evaluations on [Quotient](https://quotientai.co).
## Installation
```console
pip install quotientai
```
## Usage
Create an API key on Quotient and set it as an environment variable called `QUOTIENT_API_KEY`. Then follow the examples below or see our [docs](https://docs.quotientai.co) for a more comprehensive walkthrough.
### Examples
**Create a prompt:**
```python
from quotientai import QuotientAI
quotient = QuotientAI()
new_prompt = quotient.prompts.create(
name="customer-support-inquiry"
system_prompt="You are a helpful assistant.",
user_prompt="How can I assist you today?"
)
print(new_prompt)
```
**Create a dataset:**
```python
from quotientai import QuotientAI
quotient = QuotientAI()
new_dataset = quotient.datasets.create(
name="my-sample-dataset"
description="My first dataset",
rows=[
{"input": "Sample input", "expected": "Sample output"},
{"input": "Another input", "expected": "Another output"}
]
)
print(new_dataset)
```
Raw data
{
"_id": null,
"home_page": null,
"name": "quotientai",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.9",
"maintainer_email": null,
"keywords": "quotient, evaluation, llms, machine learning, ai",
"author": "Freddie Vargus",
"author_email": "freddie@quotientai.co",
"download_url": "https://files.pythonhosted.org/packages/dd/3a/d7861407a4554ed268e152c329307c52672e6fbe90c15c0ae4218c5dcf82/quotientai-0.1.3.tar.gz",
"platform": null,
"description": "# quotientai\n[![PyPI version](https://img.shields.io/pypi/v/quotientai)](https://pypi.org/project/quotientai)\n\n## Overview\n\n`quotientai` is an SDK and CLI built to manage artifacts (prompts, datasets), and run evaluations on [Quotient](https://quotientai.co).\n\n## Installation\n\n```console\npip install quotientai\n```\n\n## Usage\n\nCreate an API key on Quotient and set it as an environment variable called `QUOTIENT_API_KEY`. Then follow the examples below or see our [docs](https://docs.quotientai.co) for a more comprehensive walkthrough.\n\n### Examples\n\n**Create a prompt:**\n\n```python\nfrom quotientai import QuotientAI\n\nquotient = QuotientAI()\n\nnew_prompt = quotient.prompts.create(\n name=\"customer-support-inquiry\"\n system_prompt=\"You are a helpful assistant.\",\n user_prompt=\"How can I assist you today?\"\n)\n\nprint(new_prompt)\n```\n\n**Create a dataset:**\n\n```python\nfrom quotientai import QuotientAI\n\nquotient = QuotientAI()\n\nnew_dataset = quotient.datasets.create(\n name=\"my-sample-dataset\"\n description=\"My first dataset\",\n rows=[\n {\"input\": \"Sample input\", \"expected\": \"Sample output\"},\n {\"input\": \"Another input\", \"expected\": \"Another output\"}\n ]\n)\n\nprint(new_dataset)\n```\n\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "CLI for evaluating large language models with Quotient",
"version": "0.1.3",
"project_urls": null,
"split_keywords": [
"quotient",
" evaluation",
" llms",
" machine learning",
" ai"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "9bf5228b91b6464ad2133e08a986ec0fb0421249d1ff2cdc96e94fa4af3d3a7b",
"md5": "8b67b39b40112ec7e306fed8957b60a3",
"sha256": "b0aa1d5e2023e02f7279db2e85bb0ce3c856d365f2cbfd8984736ec3665ff31f"
},
"downloads": -1,
"filename": "quotientai-0.1.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "8b67b39b40112ec7e306fed8957b60a3",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.9",
"size": 14356,
"upload_time": "2024-12-13T19:38:03",
"upload_time_iso_8601": "2024-12-13T19:38:03.448408Z",
"url": "https://files.pythonhosted.org/packages/9b/f5/228b91b6464ad2133e08a986ec0fb0421249d1ff2cdc96e94fa4af3d3a7b/quotientai-0.1.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "dd3ad7861407a4554ed268e152c329307c52672e6fbe90c15c0ae4218c5dcf82",
"md5": "ce5d7d27c2be7aab373c5a432bd239f1",
"sha256": "3e6001b940c0a3019c95f4340c94407e48f716a93e08d4dc134969faee69ffd4"
},
"downloads": -1,
"filename": "quotientai-0.1.3.tar.gz",
"has_sig": false,
"md5_digest": "ce5d7d27c2be7aab373c5a432bd239f1",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.9",
"size": 11871,
"upload_time": "2024-12-13T19:38:06",
"upload_time_iso_8601": "2024-12-13T19:38:06.000695Z",
"url": "https://files.pythonhosted.org/packages/dd/3a/d7861407a4554ed268e152c329307c52672e6fbe90c15c0ae4218c5dcf82/quotientai-0.1.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-13 19:38:06",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "quotientai"
}