quotientai


Namequotientai JSON
Version 0.1.3 PyPI version JSON
download
home_pageNone
SummaryCLI for evaluating large language models with Quotient
upload_time2024-12-13 19:38:06
maintainerNone
docs_urlNone
authorFreddie Vargus
requires_python<4.0,>=3.9
licenseApache-2.0
keywords quotient evaluation llms machine learning ai
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # quotientai
[![PyPI version](https://img.shields.io/pypi/v/quotientai)](https://pypi.org/project/quotientai)

## Overview

`quotientai` is an SDK and CLI built to manage artifacts (prompts, datasets), and run evaluations on [Quotient](https://quotientai.co).

## Installation

```console
pip install quotientai
```

## Usage

Create an API key on Quotient and set it as an environment variable called `QUOTIENT_API_KEY`. Then follow the examples below or see our [docs](https://docs.quotientai.co) for a more comprehensive walkthrough.

### Examples

**Create a prompt:**

```python
from quotientai import QuotientAI

quotient = QuotientAI()

new_prompt = quotient.prompts.create(
    name="customer-support-inquiry"
    system_prompt="You are a helpful assistant.",
    user_prompt="How can I assist you today?"
)

print(new_prompt)
```

**Create a dataset:**

```python
from quotientai import QuotientAI

quotient = QuotientAI()

new_dataset = quotient.datasets.create(
    name="my-sample-dataset"
    description="My first dataset",
    rows=[
        {"input": "Sample input", "expected": "Sample output"},
        {"input": "Another input", "expected": "Another output"}
    ]
)

print(new_dataset)
```


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "quotientai",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "quotient, evaluation, llms, machine learning, ai",
    "author": "Freddie Vargus",
    "author_email": "freddie@quotientai.co",
    "download_url": "https://files.pythonhosted.org/packages/dd/3a/d7861407a4554ed268e152c329307c52672e6fbe90c15c0ae4218c5dcf82/quotientai-0.1.3.tar.gz",
    "platform": null,
    "description": "# quotientai\n[![PyPI version](https://img.shields.io/pypi/v/quotientai)](https://pypi.org/project/quotientai)\n\n## Overview\n\n`quotientai` is an SDK and CLI built to manage artifacts (prompts, datasets), and run evaluations on [Quotient](https://quotientai.co).\n\n## Installation\n\n```console\npip install quotientai\n```\n\n## Usage\n\nCreate an API key on Quotient and set it as an environment variable called `QUOTIENT_API_KEY`. Then follow the examples below or see our [docs](https://docs.quotientai.co) for a more comprehensive walkthrough.\n\n### Examples\n\n**Create a prompt:**\n\n```python\nfrom quotientai import QuotientAI\n\nquotient = QuotientAI()\n\nnew_prompt = quotient.prompts.create(\n    name=\"customer-support-inquiry\"\n    system_prompt=\"You are a helpful assistant.\",\n    user_prompt=\"How can I assist you today?\"\n)\n\nprint(new_prompt)\n```\n\n**Create a dataset:**\n\n```python\nfrom quotientai import QuotientAI\n\nquotient = QuotientAI()\n\nnew_dataset = quotient.datasets.create(\n    name=\"my-sample-dataset\"\n    description=\"My first dataset\",\n    rows=[\n        {\"input\": \"Sample input\", \"expected\": \"Sample output\"},\n        {\"input\": \"Another input\", \"expected\": \"Another output\"}\n    ]\n)\n\nprint(new_dataset)\n```\n\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "CLI for evaluating large language models with Quotient",
    "version": "0.1.3",
    "project_urls": null,
    "split_keywords": [
        "quotient",
        " evaluation",
        " llms",
        " machine learning",
        " ai"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9bf5228b91b6464ad2133e08a986ec0fb0421249d1ff2cdc96e94fa4af3d3a7b",
                "md5": "8b67b39b40112ec7e306fed8957b60a3",
                "sha256": "b0aa1d5e2023e02f7279db2e85bb0ce3c856d365f2cbfd8984736ec3665ff31f"
            },
            "downloads": -1,
            "filename": "quotientai-0.1.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8b67b39b40112ec7e306fed8957b60a3",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 14356,
            "upload_time": "2024-12-13T19:38:03",
            "upload_time_iso_8601": "2024-12-13T19:38:03.448408Z",
            "url": "https://files.pythonhosted.org/packages/9b/f5/228b91b6464ad2133e08a986ec0fb0421249d1ff2cdc96e94fa4af3d3a7b/quotientai-0.1.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "dd3ad7861407a4554ed268e152c329307c52672e6fbe90c15c0ae4218c5dcf82",
                "md5": "ce5d7d27c2be7aab373c5a432bd239f1",
                "sha256": "3e6001b940c0a3019c95f4340c94407e48f716a93e08d4dc134969faee69ffd4"
            },
            "downloads": -1,
            "filename": "quotientai-0.1.3.tar.gz",
            "has_sig": false,
            "md5_digest": "ce5d7d27c2be7aab373c5a432bd239f1",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 11871,
            "upload_time": "2024-12-13T19:38:06",
            "upload_time_iso_8601": "2024-12-13T19:38:06.000695Z",
            "url": "https://files.pythonhosted.org/packages/dd/3a/d7861407a4554ed268e152c329307c52672e6fbe90c15c0ae4218c5dcf82/quotientai-0.1.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-13 19:38:06",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "quotientai"
}
        
Elapsed time: 8.11853s