# qwen-vl-utils
Qwen-VL Utils contains a set of helper functions for processing and integrating visual language information with Qwen-VL Series Model.
## Install
```bash
pip install qwen-vl-utils
```
## Usage
```python
from transformers import Qwen2VLForConditionalGeneration, Qwen2VLProcessor
from qwen_vl_utils import process_vision_info
# You can directly insert a local file path, a URL, or a base64-encoded image into the position where you want in the text.
messages = [
# Image
## Local file path
[{"role": "user", "content": [{"type": "image", "image": "file:///path/to/your/image.jpg"}, {"type": "text", "text": "Describe this image."}]}],
## Image URL
[{"role": "user", "content": [{"type": "image", "image": "http://path/to/your/image.jpg"}, {"type": "text", "text": "Describe this image."}]}],
## Base64 encoded image
[{"role": "user", "content": [{"type": "image", "image": "data:image;base64,/9j/..."}, {"type": "text", "text": "Describe this image."}]}],
## PIL.Image.Image
[{"role": "user", "content": [{"type": "image", "image": pil_image}, {"type": "text", "text": "Describe this image."}]}],
## Model dynamically adjusts image size, specify dimensions if required.
[{"role": "user", "content": [{"type": "image", "image": "file:///path/to/your/image.jpg", "resized_height": 280, "resized_width": 420}, {"type": "text", "text": "Describe this image."}]}],
# Video
## Local video path
[{"role": "user", "content": [{"type": "video", "video": "file:///path/to/video1.mp4"}, {"type": "text", "text": "Describe this video."}]}],
## Local video frames
[{"role": "user", "content": [{"type": "video", "video": ["file:///path/to/extracted_frame1.jpg", "file:///path/to/extracted_frame2.jpg", "file:///path/to/extracted_frame3.jpg"],}, {"type": "text", "text": "Describe this video."},],}],
## Model dynamically adjusts video nframes, video height and width. specify args if required.
[{"role": "user", "content": [{"type": "video", "video": "file:///path/to/video1.mp4", "fps": 2.0, "resized_height": 280, "resized_width": 280}, {"type": "text", "text": "Describe this video."}]}],
]
processor = Qwen2VLProcessor.from_pretrained(model_path)
model = Qwen2VLForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto", device_map="auto")
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
images, videos = process_vision_info(messages)
inputs = processor(text=text, images=images, videos=videos, padding=True, return_tensors="pt")
print(inputs)
generated_ids = model.generate(**inputs)
print(generated_ids)
```
Raw data
{
"_id": null,
"home_page": null,
"name": "qwen-vl-utils",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "large language model, pytorch, qwen-vl, vision language model",
"author": null,
"author_email": "Qwen Team <chenkeqin.ckq@alibaba-inc.com>",
"download_url": "https://files.pythonhosted.org/packages/3a/8d/4256e3b9dc36f104269abc1a2ec5b22a6aebb1d8366cd3dd7e374d7b0d54/qwen_vl_utils-0.0.8.tar.gz",
"platform": null,
"description": "# qwen-vl-utils\n\nQwen-VL Utils contains a set of helper functions for processing and integrating visual language information with Qwen-VL Series Model.\n\n## Install\n\n```bash\npip install qwen-vl-utils\n```\n\n## Usage\n\n```python\nfrom transformers import Qwen2VLForConditionalGeneration, Qwen2VLProcessor\nfrom qwen_vl_utils import process_vision_info\n\n\n# You can directly insert a local file path, a URL, or a base64-encoded image into the position where you want in the text.\nmessages = [\n # Image\n ## Local file path\n [{\"role\": \"user\", \"content\": [{\"type\": \"image\", \"image\": \"file:///path/to/your/image.jpg\"}, {\"type\": \"text\", \"text\": \"Describe this image.\"}]}],\n ## Image URL\n [{\"role\": \"user\", \"content\": [{\"type\": \"image\", \"image\": \"http://path/to/your/image.jpg\"}, {\"type\": \"text\", \"text\": \"Describe this image.\"}]}],\n ## Base64 encoded image\n [{\"role\": \"user\", \"content\": [{\"type\": \"image\", \"image\": \"data:image;base64,/9j/...\"}, {\"type\": \"text\", \"text\": \"Describe this image.\"}]}],\n ## PIL.Image.Image\n [{\"role\": \"user\", \"content\": [{\"type\": \"image\", \"image\": pil_image}, {\"type\": \"text\", \"text\": \"Describe this image.\"}]}],\n ## Model dynamically adjusts image size, specify dimensions if required.\n [{\"role\": \"user\", \"content\": [{\"type\": \"image\", \"image\": \"file:///path/to/your/image.jpg\", \"resized_height\": 280, \"resized_width\": 420}, {\"type\": \"text\", \"text\": \"Describe this image.\"}]}],\n # Video\n ## Local video path\n [{\"role\": \"user\", \"content\": [{\"type\": \"video\", \"video\": \"file:///path/to/video1.mp4\"}, {\"type\": \"text\", \"text\": \"Describe this video.\"}]}],\n ## Local video frames\n [{\"role\": \"user\", \"content\": [{\"type\": \"video\", \"video\": [\"file:///path/to/extracted_frame1.jpg\", \"file:///path/to/extracted_frame2.jpg\", \"file:///path/to/extracted_frame3.jpg\"],}, {\"type\": \"text\", \"text\": \"Describe this video.\"},],}],\n ## Model dynamically adjusts video nframes, video height and width. specify args if required.\n [{\"role\": \"user\", \"content\": [{\"type\": \"video\", \"video\": \"file:///path/to/video1.mp4\", \"fps\": 2.0, \"resized_height\": 280, \"resized_width\": 280}, {\"type\": \"text\", \"text\": \"Describe this video.\"}]}],\n]\n\nprocessor = Qwen2VLProcessor.from_pretrained(model_path)\nmodel = Qwen2VLForConditionalGeneration.from_pretrained(model_path, torch_dtype=\"auto\", device_map=\"auto\")\ntext = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)\nimages, videos = process_vision_info(messages)\ninputs = processor(text=text, images=images, videos=videos, padding=True, return_tensors=\"pt\")\nprint(inputs)\ngenerated_ids = model.generate(**inputs)\nprint(generated_ids)\n```",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Qwen Vision Language Model Utils - PyTorch",
"version": "0.0.8",
"project_urls": {
"Homepage": "https://github.com/QwenLM/Qwen2-VL/tree/main/qwen-vl-utils",
"Issues": "https://github.com/QwenLM/Qwen2-VL/issues",
"Repository": "https://github.com/QwenLM/Qwen2-VL.git"
},
"split_keywords": [
"large language model",
" pytorch",
" qwen-vl",
" vision language model"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "4fe55db523e7e2bd7d0043b2dfcb03dc3e87d3f9bbf257fcee6f926f83568699",
"md5": "894fc912d2753f9f39cb6f7b5477795e",
"sha256": "2988aa08256f3d7ee6f08d7b27b004e840608b61ed36d0b32d1775be56a1639d"
},
"downloads": -1,
"filename": "qwen_vl_utils-0.0.8-py3-none-any.whl",
"has_sig": false,
"md5_digest": "894fc912d2753f9f39cb6f7b5477795e",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 5883,
"upload_time": "2024-09-24T09:55:06",
"upload_time_iso_8601": "2024-09-24T09:55:06.084269Z",
"url": "https://files.pythonhosted.org/packages/4f/e5/5db523e7e2bd7d0043b2dfcb03dc3e87d3f9bbf257fcee6f926f83568699/qwen_vl_utils-0.0.8-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3a8d4256e3b9dc36f104269abc1a2ec5b22a6aebb1d8366cd3dd7e374d7b0d54",
"md5": "b8581ca75dff9b4f9ab38029a28df8db",
"sha256": "3dfce951226b0a3c9cb13e6d0ad92d86d6fb3d8946af3bcf5c4b0121a1fa717a"
},
"downloads": -1,
"filename": "qwen_vl_utils-0.0.8.tar.gz",
"has_sig": false,
"md5_digest": "b8581ca75dff9b4f9ab38029a28df8db",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 6773,
"upload_time": "2024-09-24T09:55:07",
"upload_time_iso_8601": "2024-09-24T09:55:07.230820Z",
"url": "https://files.pythonhosted.org/packages/3a/8d/4256e3b9dc36f104269abc1a2ec5b22a6aebb1d8366cd3dd7e374d7b0d54/qwen_vl_utils-0.0.8.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-24 09:55:07",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "QwenLM",
"github_project": "Qwen2-VL",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "qwen-vl-utils"
}