radiology-swarm


Nameradiology-swarm JSON
Version 0.0.3 PyPI version JSON
download
home_pagehttps://github.com/The-Swarm-Corporation/radiology-swarm
SummaryRadiologySwarm - TGSC
upload_time2024-12-07 20:09:30
maintainerNone
docs_urlNone
authorKye Gomez
requires_python<4.0,>=3.10
licenseMIT
keywords artificial intelligence deep learning optimizers prompt engineering
VCS
bugtrack_url
requirements swarms swarm-models pydicom nibabel
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Radiology Swarm ๐Ÿฅ


[![Join our Discord](https://img.shields.io/badge/Discord-Join%20our%20server-5865F2?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/agora-999382051935506503) [![Subscribe on YouTube](https://img.shields.io/badge/YouTube-Subscribe-red?style=for-the-badge&logo=youtube&logoColor=white)](https://www.youtube.com/@kyegomez3242) [![Connect on LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/kye-g-38759a207/) [![Follow on X.com](https://img.shields.io/badge/X.com-Follow-1DA1F2?style=for-the-badge&logo=x&logoColor=white)](https://x.com/kyegomezb)





[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)
[![Documentation](https://img.shields.io/badge/docs-latest-brightgreen.svg)](https://docs.radiology-swarm.com)
[![Tests](https://github.com/The-Swarm-Corporation/radiology-swarm/workflows/Tests/badge.svg)](https://github.com/The-Swarm-Corporation/radiology-swarm/actions)

A powerful, enterprise-grade multi-agent system for advanced radiological analysis, diagnosis, and treatment planning. This system leverages specialized AI agents working in concert to provide comprehensive medical imaging analysis and care recommendations.

## ๐ŸŒŸ Features

- **Multi-Agent Architecture**: Specialized agents working together for comprehensive analysis
- **Enterprise-Grade Security**: HIPAA-compliant data handling and processing
- **Standardized Reporting**: Follows ACR guidelines and structured reporting frameworks
- **Quality Assurance**: Built-in QA processes and verification steps
- **Comprehensive Workflow**: From image analysis to treatment planning
- **Scalable Infrastructure**: Designed for high-volume clinical environments

## ๐Ÿ—๏ธ Architecture

```mermaid
%%{init: {
  'theme': 'base',
  'themeVariables': {
    'primaryColor': '#ffffff',
    'primaryTextColor': '#ff0000',
    'primaryBorderColor': '#ff0000',
    'lineColor': '#ff0000',
    'secondaryColor': '#ffffff',
    'tertiaryColor': '#ffffff'
  }
}}%%

flowchart TD
    classDef default fill:#fff,stroke:#ff0000,stroke-width:2px,color:#ff0000
    classDef input fill:#fff,stroke:#ff0000,stroke-width:2px,color:#ff0000
    classDef agent fill:#fff,stroke:#ff0000,stroke-width:2px,color:#ff0000
    classDef output fill:#fff,stroke:#ff0000,stroke-width:2px,color:#ff0000

    Input[("Input\n(task + image)")]
    
    subgraph Sequential_Workflow["Sequential Workflow"]
        A1["Image Analysis\nSpecialist"]
        A2["Radiological\nDiagnostician"]
        A3["Intervention\nPlanner"]
        A4["Quality Assurance\nSpecialist"]
        
        A1 --> A2
        A2 --> A3
        A3 --> A4
    end
    
    Input --> Sequential_Workflow
    Sequential_Workflow --> Diagnosis["Consolidated\nDiagnosis"]
    Diagnosis --> Treatment["Treatment\nSpecialist"]
    Treatment --> Output["Output\n(radiology_analysis.md)"]

    style Sequential_Workflow fill:#fff,stroke:#ff0000,stroke-width:2px
```

The system consists of six specialized agents:

1. **Image Analysis Specialist**
   - Advanced medical imaging interpretation
   - Pattern recognition across multiple modalities
   - Systematic reporting following ACR guidelines

2. **Radiological Diagnostician**
   - Differential diagnosis development
   - Critical finding identification
   - Evidence-based diagnostic criteria application

3. **Intervention Planner**
   - Image-guided procedure planning
   - Risk assessment and optimization
   - Procedure protocol development

4. **Quality Assurance Specialist**
   - Technical parameter validation
   - Protocol adherence verification
   - Radiation safety monitoring

5. **Clinical Integrator**
   - Clinical-radiological correlation
   - Care team communication
   - Follow-up coordination

6. **Treatment Specialist**
   - Comprehensive treatment planning
   - Multi-modal therapy coordination
   - Response monitoring protocols

## ๐Ÿš€ Quick Start

### Installation

```bash
pip install radiology-swarm
```

### Basic Usage

```python
from radiology_swarm import run_diagnosis_agents

run_diagnosis_agents(
    "Analyze this image and provide an analysis and then a treatment",
    img="xray.jpeg",
)
```

## ๐Ÿ”ง Configuration

Create a `.env` file in your project root:

```env
OPENAI_API_KEY=your_api_key_here
MODEL_NAME=gpt-4o
MAX_RETRIES=2
VERBOSE=True
WORKSPACE_DIR="agent_workspace"
```
## ๐Ÿ” Security & Compliance

- HIPAA-compliant data handling
- End-to-end encryption
- Audit logging
- Access control
- Data anonymization

## ๐Ÿงช Testing

```bash
# Run all tests
pytest

# Run specific test suite
pytest tests/test_image_analysis.py
```

## ๐Ÿค Contributing

We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.

1. Fork the repository
2. Create a feature branch
3. Commit your changes
4. Push to the branch
5. Create a Pull Request

## ๐Ÿ“„ License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## ๐Ÿข Enterprise Support

Enterprise support, custom deployment, and training available. Contact us at [enterprise@radiology-swarm.com](mailto:enterprise@radiology-swarm.com)

## ๐Ÿ“Š Performance Metrics

- Average analysis time: <2 seconds
- Accuracy rate: >99.9%
- Uptime: 99.99%
- API response time: <100ms

## ๐Ÿšจ Status

Current stable version: 1.0.0
- [ ] Add support for dcm, and other data types
- [ ] Implement Multi-Modal RAG for image processing maybe chromadb 
- [ ] CI/CD pipeline
- [ ] Automated testing
- [ ] Documentation
- [ ] Enterprise support

## ๐Ÿ™ Acknowledgments

- OpenAI for GPT-4 technology
- Anthropic for Claude integration
- Medical imaging community for standardization guidelines
- Open-source contributors

## โš ๏ธ Disclaimer

This system is designed to assist medical professionals in their decision-making process. It does not replace professional medical judgment. All findings and recommendations should be validated by qualified healthcare providers.
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/The-Swarm-Corporation/radiology-swarm",
    "name": "radiology-swarm",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": "artificial intelligence, deep learning, optimizers, Prompt Engineering",
    "author": "Kye Gomez",
    "author_email": "kye@apac.ai",
    "download_url": "https://files.pythonhosted.org/packages/86/58/044eaa44ffc096d1d706591fc280868d751cbae2820b7e70f8622c06c973/radiology_swarm-0.0.3.tar.gz",
    "platform": null,
    "description": "# Radiology Swarm \ud83c\udfe5\n\n\n[![Join our Discord](https://img.shields.io/badge/Discord-Join%20our%20server-5865F2?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/agora-999382051935506503) [![Subscribe on YouTube](https://img.shields.io/badge/YouTube-Subscribe-red?style=for-the-badge&logo=youtube&logoColor=white)](https://www.youtube.com/@kyegomez3242) [![Connect on LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/kye-g-38759a207/) [![Follow on X.com](https://img.shields.io/badge/X.com-Follow-1DA1F2?style=for-the-badge&logo=x&logoColor=white)](https://x.com/kyegomezb)\n\n\n\n\n\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)\n[![Documentation](https://img.shields.io/badge/docs-latest-brightgreen.svg)](https://docs.radiology-swarm.com)\n[![Tests](https://github.com/The-Swarm-Corporation/radiology-swarm/workflows/Tests/badge.svg)](https://github.com/The-Swarm-Corporation/radiology-swarm/actions)\n\nA powerful, enterprise-grade multi-agent system for advanced radiological analysis, diagnosis, and treatment planning. This system leverages specialized AI agents working in concert to provide comprehensive medical imaging analysis and care recommendations.\n\n## \ud83c\udf1f Features\n\n- **Multi-Agent Architecture**: Specialized agents working together for comprehensive analysis\n- **Enterprise-Grade Security**: HIPAA-compliant data handling and processing\n- **Standardized Reporting**: Follows ACR guidelines and structured reporting frameworks\n- **Quality Assurance**: Built-in QA processes and verification steps\n- **Comprehensive Workflow**: From image analysis to treatment planning\n- **Scalable Infrastructure**: Designed for high-volume clinical environments\n\n## \ud83c\udfd7\ufe0f Architecture\n\n```mermaid\n%%{init: {\n  'theme': 'base',\n  'themeVariables': {\n    'primaryColor': '#ffffff',\n    'primaryTextColor': '#ff0000',\n    'primaryBorderColor': '#ff0000',\n    'lineColor': '#ff0000',\n    'secondaryColor': '#ffffff',\n    'tertiaryColor': '#ffffff'\n  }\n}}%%\n\nflowchart TD\n    classDef default fill:#fff,stroke:#ff0000,stroke-width:2px,color:#ff0000\n    classDef input fill:#fff,stroke:#ff0000,stroke-width:2px,color:#ff0000\n    classDef agent fill:#fff,stroke:#ff0000,stroke-width:2px,color:#ff0000\n    classDef output fill:#fff,stroke:#ff0000,stroke-width:2px,color:#ff0000\n\n    Input[(\"Input\\n(task + image)\")]\n    \n    subgraph Sequential_Workflow[\"Sequential Workflow\"]\n        A1[\"Image Analysis\\nSpecialist\"]\n        A2[\"Radiological\\nDiagnostician\"]\n        A3[\"Intervention\\nPlanner\"]\n        A4[\"Quality Assurance\\nSpecialist\"]\n        \n        A1 --> A2\n        A2 --> A3\n        A3 --> A4\n    end\n    \n    Input --> Sequential_Workflow\n    Sequential_Workflow --> Diagnosis[\"Consolidated\\nDiagnosis\"]\n    Diagnosis --> Treatment[\"Treatment\\nSpecialist\"]\n    Treatment --> Output[\"Output\\n(radiology_analysis.md)\"]\n\n    style Sequential_Workflow fill:#fff,stroke:#ff0000,stroke-width:2px\n```\n\nThe system consists of six specialized agents:\n\n1. **Image Analysis Specialist**\n   - Advanced medical imaging interpretation\n   - Pattern recognition across multiple modalities\n   - Systematic reporting following ACR guidelines\n\n2. **Radiological Diagnostician**\n   - Differential diagnosis development\n   - Critical finding identification\n   - Evidence-based diagnostic criteria application\n\n3. **Intervention Planner**\n   - Image-guided procedure planning\n   - Risk assessment and optimization\n   - Procedure protocol development\n\n4. **Quality Assurance Specialist**\n   - Technical parameter validation\n   - Protocol adherence verification\n   - Radiation safety monitoring\n\n5. **Clinical Integrator**\n   - Clinical-radiological correlation\n   - Care team communication\n   - Follow-up coordination\n\n6. **Treatment Specialist**\n   - Comprehensive treatment planning\n   - Multi-modal therapy coordination\n   - Response monitoring protocols\n\n## \ud83d\ude80 Quick Start\n\n### Installation\n\n```bash\npip install radiology-swarm\n```\n\n### Basic Usage\n\n```python\nfrom radiology_swarm import run_diagnosis_agents\n\nrun_diagnosis_agents(\n    \"Analyze this image and provide an analysis and then a treatment\",\n    img=\"xray.jpeg\",\n)\n```\n\n## \ud83d\udd27 Configuration\n\nCreate a `.env` file in your project root:\n\n```env\nOPENAI_API_KEY=your_api_key_here\nMODEL_NAME=gpt-4o\nMAX_RETRIES=2\nVERBOSE=True\nWORKSPACE_DIR=\"agent_workspace\"\n```\n## \ud83d\udd10 Security & Compliance\n\n- HIPAA-compliant data handling\n- End-to-end encryption\n- Audit logging\n- Access control\n- Data anonymization\n\n## \ud83e\uddea Testing\n\n```bash\n# Run all tests\npytest\n\n# Run specific test suite\npytest tests/test_image_analysis.py\n```\n\n## \ud83e\udd1d Contributing\n\nWe welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.\n\n1. Fork the repository\n2. Create a feature branch\n3. Commit your changes\n4. Push to the branch\n5. Create a Pull Request\n\n## \ud83d\udcc4 License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n## \ud83c\udfe2 Enterprise Support\n\nEnterprise support, custom deployment, and training available. Contact us at [enterprise@radiology-swarm.com](mailto:enterprise@radiology-swarm.com)\n\n## \ud83d\udcca Performance Metrics\n\n- Average analysis time: <2 seconds\n- Accuracy rate: >99.9%\n- Uptime: 99.99%\n- API response time: <100ms\n\n## \ud83d\udea8 Status\n\nCurrent stable version: 1.0.0\n- [ ] Add support for dcm, and other data types\n- [ ] Implement Multi-Modal RAG for image processing maybe chromadb \n- [ ] CI/CD pipeline\n- [ ] Automated testing\n- [ ] Documentation\n- [ ] Enterprise support\n\n## \ud83d\ude4f Acknowledgments\n\n- OpenAI for GPT-4 technology\n- Anthropic for Claude integration\n- Medical imaging community for standardization guidelines\n- Open-source contributors\n\n## \u26a0\ufe0f Disclaimer\n\nThis system is designed to assist medical professionals in their decision-making process. It does not replace professional medical judgment. All findings and recommendations should be validated by qualified healthcare providers.",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "RadiologySwarm - TGSC",
    "version": "0.0.3",
    "project_urls": {
        "Documentation": "https://github.com/The-Swarm-Corporation/radiology-swarm",
        "Homepage": "https://github.com/The-Swarm-Corporation/radiology-swarm",
        "Repository": "https://github.com/The-Swarm-Corporation/radiology-swarm"
    },
    "split_keywords": [
        "artificial intelligence",
        " deep learning",
        " optimizers",
        " prompt engineering"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a521ee6a9c6c098bcd7e5a1eb853f288b98b6ed13f1e82c00cbe2a5b54c3bcec",
                "md5": "f1f2e1910944f8504186091a5bde08da",
                "sha256": "40320068825acc22c1b0c06e30256e0db2c389f45c508f1861133914ed40d44e"
            },
            "downloads": -1,
            "filename": "radiology_swarm-0.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f1f2e1910944f8504186091a5bde08da",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 13049,
            "upload_time": "2024-12-07T20:09:28",
            "upload_time_iso_8601": "2024-12-07T20:09:28.895913Z",
            "url": "https://files.pythonhosted.org/packages/a5/21/ee6a9c6c098bcd7e5a1eb853f288b98b6ed13f1e82c00cbe2a5b54c3bcec/radiology_swarm-0.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8658044eaa44ffc096d1d706591fc280868d751cbae2820b7e70f8622c06c973",
                "md5": "8b5f7c9b650afb4e1d202a5ba95c00c7",
                "sha256": "da641c635f3fac3e694055e7032667d8b7eea7c43dc94faa24219eb2f8292edd"
            },
            "downloads": -1,
            "filename": "radiology_swarm-0.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "8b5f7c9b650afb4e1d202a5ba95c00c7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 13991,
            "upload_time": "2024-12-07T20:09:30",
            "upload_time_iso_8601": "2024-12-07T20:09:30.529852Z",
            "url": "https://files.pythonhosted.org/packages/86/58/044eaa44ffc096d1d706591fc280868d751cbae2820b7e70f8622c06c973/radiology_swarm-0.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-07 20:09:30",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "The-Swarm-Corporation",
    "github_project": "radiology-swarm",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "swarms",
            "specs": []
        },
        {
            "name": "swarm-models",
            "specs": []
        },
        {
            "name": "pydicom",
            "specs": []
        },
        {
            "name": "nibabel",
            "specs": []
        }
    ],
    "lcname": "radiology-swarm"
}
        
Elapsed time: 0.40631s