radqy


Nameradqy JSON
Version 2025.3.2 PyPI version JSON
download
home_pageNone
SummaryRadQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) and computed tomography (CT) data.
upload_time2025-07-31 14:04:00
maintainerNone
docs_urlNone
authorNone
requires_python<3.12,>=3.8
licenseBSD 3-Clause Clear License
keywords mri ct
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            RadQy
=====

RadQy is a quality assurance and evaluation tool for quantitative assessment of MRI and CT imaging data.

It computes a variety of image quality metrics (IQMs) to assist with downstream image analysis, machine learning, and radiomic studies.

----

Features:
- Computes over 30 image quality metrics
- Supports T1w, T2w, and CT modalities
- UMAP visualization of quality trends
- CLI for batch processing

----

Installation
------------

From GitHub (latest version):
::

    pip install git+https://github.com/viswanath-lab/RadQy.git

From PyPI (stable, may lag behind):
::

    pip install radqy

----

Usage
-----

Run from command line:

::

    radqy --modality T1w --input my_scan.nii.gz

----

Citation
--------

If you use this software, please cite the corresponding paper (coming soon).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "radqy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.12,>=3.8",
    "maintainer_email": null,
    "keywords": "MRI, CT",
    "author": null,
    "author_email": "Amir Reza Sadri <ars329@case.edu>",
    "download_url": "https://files.pythonhosted.org/packages/a4/bc/d35d626ff6398fed58030cfaf8a2cd0d6804810f4b4d0c94e8ce20fe05b2/radqy-2025.3.2.tar.gz",
    "platform": null,
    "description": "RadQy\r\n=====\r\n\r\nRadQy is a quality assurance and evaluation tool for quantitative assessment of MRI and CT imaging data.\r\n\r\nIt computes a variety of image quality metrics (IQMs) to assist with downstream image analysis, machine learning, and radiomic studies.\r\n\r\n----\r\n\r\nFeatures:\r\n- Computes over 30 image quality metrics\r\n- Supports T1w, T2w, and CT modalities\r\n- UMAP visualization of quality trends\r\n- CLI for batch processing\r\n\r\n----\r\n\r\nInstallation\r\n------------\r\n\r\nFrom GitHub (latest version):\r\n::\r\n\r\n    pip install git+https://github.com/viswanath-lab/RadQy.git\r\n\r\nFrom PyPI (stable, may lag behind):\r\n::\r\n\r\n    pip install radqy\r\n\r\n----\r\n\r\nUsage\r\n-----\r\n\r\nRun from command line:\r\n\r\n::\r\n\r\n    radqy --modality T1w --input my_scan.nii.gz\r\n\r\n----\r\n\r\nCitation\r\n--------\r\n\r\nIf you use this software, please cite the corresponding paper (coming soon).\r\n",
    "bugtrack_url": null,
    "license": "BSD 3-Clause Clear License",
    "summary": "RadQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) and computed tomography (CT) data.",
    "version": "2025.3.2",
    "project_urls": null,
    "split_keywords": [
        "mri",
        " ct"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "edc8c49c679333ec145b9e9141f400eaecd73c77ac36a92aeb9cfc44f22944d5",
                "md5": "b57a3d042ae2ff1cbbab16dbea81152c",
                "sha256": "ae4bd7010464f53f71bc0dd5446e05c1925c6cc543b6f18071f049b70dfc01a6"
            },
            "downloads": -1,
            "filename": "radqy-2025.3.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b57a3d042ae2ff1cbbab16dbea81152c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.12,>=3.8",
            "size": 18242,
            "upload_time": "2025-07-31T14:03:59",
            "upload_time_iso_8601": "2025-07-31T14:03:59.951901Z",
            "url": "https://files.pythonhosted.org/packages/ed/c8/c49c679333ec145b9e9141f400eaecd73c77ac36a92aeb9cfc44f22944d5/radqy-2025.3.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a4bcd35d626ff6398fed58030cfaf8a2cd0d6804810f4b4d0c94e8ce20fe05b2",
                "md5": "18f83026aaddece4cc658e5afb1b6d2f",
                "sha256": "3b2879a1f803461c588bc9638870e99ca0efddfcbe7c731593845c6c10b01f0e"
            },
            "downloads": -1,
            "filename": "radqy-2025.3.2.tar.gz",
            "has_sig": false,
            "md5_digest": "18f83026aaddece4cc658e5afb1b6d2f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.12,>=3.8",
            "size": 17509,
            "upload_time": "2025-07-31T14:04:00",
            "upload_time_iso_8601": "2025-07-31T14:04:00.917881Z",
            "url": "https://files.pythonhosted.org/packages/a4/bc/d35d626ff6398fed58030cfaf8a2cd0d6804810f4b4d0c94e8ce20fe05b2/radqy-2025.3.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-31 14:04:00",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "radqy"
}
        
Elapsed time: 0.95658s