ragbits-document-search


Nameragbits-document-search JSON
Version 1.3.0 PyPI version JSON
download
home_pageNone
SummaryDocument Search module for Ragbits
upload_time2025-09-11 13:58:52
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords document search genai generative ai llms large language models rag retrieval augmented generation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Ragbits Document Search

Ragbits Document Search is a Python package that provides tools for building RAG applications. It helps ingest, index, and search documents to retrieve relevant information for your prompts.

## Installation

You can install the latest version of Ragbits Document Search using pip:

```bash
pip install ragbits-document-search
```

## Quickstart
```python
from ragbits.core.embeddings.litellm import LiteLLMEmbedder
from ragbits.core.vector_stores.in_memory import InMemoryVectorStore
from ragbits.document_search import DocumentSearch

async def main() -> None:
    """
    Run the example.
    """
    embedder = LiteLLMEmbedder(
        model="text-embedding-3-small",
    )
    vector_store = InMemoryVectorStore(embedder=embedder)
    document_search = DocumentSearch(
        vector_store=vector_store,
    )

    # Ingest all .txt files from the "biographies" directory
    await document_search.ingest("file://biographies/*.txt")

    # Search the documents for the query
    results = await document_search.search("When was Marie Curie-Sklodowska born?")
    print(results)


if __name__ == "__main__":
    asyncio.run(main())
```

## Documentation
* [Quickstart 2: Adding RAG Capabilities](https://ragbits.deepsense.ai/quickstart/quickstart2_rag/)
* [How-To Guides - Document Search](https://ragbits.deepsense.ai/how-to/document_search/async_processing/)
* [API Reference - Document Search](https://ragbits.deepsense.ai/api_reference/document_search/)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "ragbits-document-search",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "Document Search, GenAI, Generative AI, LLMs, Large Language Models, RAG, Retrieval Augmented Generation",
    "author": null,
    "author_email": "\"deepsense.ai\" <ragbits@deepsense.ai>",
    "download_url": "https://files.pythonhosted.org/packages/75/aa/2ac1ffa5a81dc76ca081df01ea5eff33329af2a6a2778c6982d0a1700646/ragbits_document_search-1.3.0.tar.gz",
    "platform": null,
    "description": "# Ragbits Document Search\n\nRagbits Document Search is a Python package that provides tools for building RAG applications. It helps ingest, index, and search documents to retrieve relevant information for your prompts.\n\n## Installation\n\nYou can install the latest version of Ragbits Document Search using pip:\n\n```bash\npip install ragbits-document-search\n```\n\n## Quickstart\n```python\nfrom ragbits.core.embeddings.litellm import LiteLLMEmbedder\nfrom ragbits.core.vector_stores.in_memory import InMemoryVectorStore\nfrom ragbits.document_search import DocumentSearch\n\nasync def main() -> None:\n    \"\"\"\n    Run the example.\n    \"\"\"\n    embedder = LiteLLMEmbedder(\n        model=\"text-embedding-3-small\",\n    )\n    vector_store = InMemoryVectorStore(embedder=embedder)\n    document_search = DocumentSearch(\n        vector_store=vector_store,\n    )\n\n    # Ingest all .txt files from the \"biographies\" directory\n    await document_search.ingest(\"file://biographies/*.txt\")\n\n    # Search the documents for the query\n    results = await document_search.search(\"When was Marie Curie-Sklodowska born?\")\n    print(results)\n\n\nif __name__ == \"__main__\":\n    asyncio.run(main())\n```\n\n## Documentation\n* [Quickstart 2: Adding RAG Capabilities](https://ragbits.deepsense.ai/quickstart/quickstart2_rag/)\n* [How-To Guides - Document Search](https://ragbits.deepsense.ai/how-to/document_search/async_processing/)\n* [API Reference - Document Search](https://ragbits.deepsense.ai/api_reference/document_search/)\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Document Search module for Ragbits",
    "version": "1.3.0",
    "project_urls": {
        "Bug Reports": "https://github.com/deepsense-ai/ragbits/issues",
        "Documentation": "https://ragbits.deepsense.ai/",
        "Homepage": "https://github.com/deepsense-ai/ragbits",
        "Source": "https://github.com/deepsense-ai/ragbits"
    },
    "split_keywords": [
        "document search",
        " genai",
        " generative ai",
        " llms",
        " large language models",
        " rag",
        " retrieval augmented generation"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "3f183b8b84bca6b70335c0f5671e72ed28ee1987408f04c22d4463598dd8fc22",
                "md5": "a1f6c401ca0faa0b386f5c89e79097e1",
                "sha256": "2f7c29e642638ab9742764c4d6a88cbbfde144c59f90d83ce016c73662290808"
            },
            "downloads": -1,
            "filename": "ragbits_document_search-1.3.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a1f6c401ca0faa0b386f5c89e79097e1",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 49055,
            "upload_time": "2025-09-11T13:58:46",
            "upload_time_iso_8601": "2025-09-11T13:58:46.132812Z",
            "url": "https://files.pythonhosted.org/packages/3f/18/3b8b84bca6b70335c0f5671e72ed28ee1987408f04c22d4463598dd8fc22/ragbits_document_search-1.3.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "75aa2ac1ffa5a81dc76ca081df01ea5eff33329af2a6a2778c6982d0a1700646",
                "md5": "8edecae800a144cd129f5308296df0d2",
                "sha256": "e510cf8aafca80cda1f0b248c9d29143810646a02ee887ff57c8822fee2889d9"
            },
            "downloads": -1,
            "filename": "ragbits_document_search-1.3.0.tar.gz",
            "has_sig": false,
            "md5_digest": "8edecae800a144cd129f5308296df0d2",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 721497,
            "upload_time": "2025-09-11T13:58:52",
            "upload_time_iso_8601": "2025-09-11T13:58:52.921771Z",
            "url": "https://files.pythonhosted.org/packages/75/aa/2ac1ffa5a81dc76ca081df01ea5eff33329af2a6a2778c6982d0a1700646/ragbits_document_search-1.3.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-11 13:58:52",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "deepsense-ai",
    "github_project": "ragbits",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "ragbits-document-search"
}
        
Elapsed time: 1.78500s