# randomcov
Generating random covariance and correlation matrices.
### Install
pip install randomcov
or for latest
pip install git+https://github.com/microprediction/randomcov.git
### Example
from randomcov import random_covariance_matrix
cov = random_covariance_matrix(n=50, corr_method='residuals', var_method='lognormal')
### Motivation
To collect standard but also novel correlation and covariance generation methods, in order to better understand when some estimation methods work better than others in different contexts: such as the construction of machine learning model ensembles, combinations of forecasts, or financial portfolios.
Raw data
{
"_id": null,
"home_page": "https://github.com/microprediction/randomcov",
"name": "randomcov",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "microprediction",
"author_email": "peter.cotton@microprediction.com",
"download_url": "https://files.pythonhosted.org/packages/4b/5c/ad70db07a975f258c76adfd9030d44a6d4fe97ed954ae9fd129f4f0519bc/randomcov-0.0.15.tar.gz",
"platform": null,
"description": "# randomcov\nGenerating random covariance and correlation matrices. \n\n\n### Install \n\n pip install randomcov \n\nor for latest\n\n pip install git+https://github.com/microprediction/randomcov.git\n \n### Example\n\n from randomcov import random_covariance_matrix\n cov = random_covariance_matrix(n=50, corr_method='residuals', var_method='lognormal')\n\n### Motivation\n\nTo collect standard but also novel correlation and covariance generation methods, in order to better understand when some estimation methods work better than others in different contexts: such as the construction of machine learning model ensembles, combinations of forecasts, or financial portfolios. \n\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Random covariance generation",
"version": "0.0.15",
"project_urls": {
"Homepage": "https://github.com/microprediction/randomcov"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "0ef2d13d2154c4c1b8f02fc633d97b9aa56f42462973fe275ad2ad51e2364055",
"md5": "64ffd2d2669b040e5d51cbcd316f2440",
"sha256": "5bab6b59c71a3f33034afac0c764cf9a710d8c1b1738425b937f5043fbe8f9b0"
},
"downloads": -1,
"filename": "randomcov-0.0.15-py3-none-any.whl",
"has_sig": false,
"md5_digest": "64ffd2d2669b040e5d51cbcd316f2440",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 17798,
"upload_time": "2024-11-17T05:02:26",
"upload_time_iso_8601": "2024-11-17T05:02:26.919037Z",
"url": "https://files.pythonhosted.org/packages/0e/f2/d13d2154c4c1b8f02fc633d97b9aa56f42462973fe275ad2ad51e2364055/randomcov-0.0.15-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4b5cad70db07a975f258c76adfd9030d44a6d4fe97ed954ae9fd129f4f0519bc",
"md5": "f5fa83bc9dd1d10290c47c35b535f02b",
"sha256": "2b2b9e38f2e3d2f506379bfd4f365a53e50e7cbb45e99e0aefaaa3ce2a094dbf"
},
"downloads": -1,
"filename": "randomcov-0.0.15.tar.gz",
"has_sig": false,
"md5_digest": "f5fa83bc9dd1d10290c47c35b535f02b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 12507,
"upload_time": "2024-11-17T05:02:28",
"upload_time_iso_8601": "2024-11-17T05:02:28.475603Z",
"url": "https://files.pythonhosted.org/packages/4b/5c/ad70db07a975f258c76adfd9030d44a6d4fe97ed954ae9fd129f4f0519bc/randomcov-0.0.15.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-17 05:02:28",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "microprediction",
"github_project": "randomcov",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "randomcov"
}