randomcov


Namerandomcov JSON
Version 0.0.15 PyPI version JSON
download
home_pagehttps://github.com/microprediction/randomcov
SummaryRandom covariance generation
upload_time2024-11-17 05:02:28
maintainerNone
docs_urlNone
authormicroprediction
requires_pythonNone
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # randomcov
Generating random covariance and correlation matrices. 


### Install 

    pip install randomcov 

or for latest

    pip install git+https://github.com/microprediction/randomcov.git
    
### Example

    from randomcov import random_covariance_matrix
    cov = random_covariance_matrix(n=50, corr_method='residuals', var_method='lognormal')

### Motivation

To collect standard but also novel correlation and covariance generation methods, in order to better understand when some estimation methods work better than others in different contexts: such as the construction of machine learning model ensembles, combinations of forecasts, or financial portfolios.  



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/microprediction/randomcov",
    "name": "randomcov",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "microprediction",
    "author_email": "peter.cotton@microprediction.com",
    "download_url": "https://files.pythonhosted.org/packages/4b/5c/ad70db07a975f258c76adfd9030d44a6d4fe97ed954ae9fd129f4f0519bc/randomcov-0.0.15.tar.gz",
    "platform": null,
    "description": "# randomcov\nGenerating random covariance and correlation matrices. \n\n\n### Install \n\n    pip install randomcov \n\nor for latest\n\n    pip install git+https://github.com/microprediction/randomcov.git\n    \n### Example\n\n    from randomcov import random_covariance_matrix\n    cov = random_covariance_matrix(n=50, corr_method='residuals', var_method='lognormal')\n\n### Motivation\n\nTo collect standard but also novel correlation and covariance generation methods, in order to better understand when some estimation methods work better than others in different contexts: such as the construction of machine learning model ensembles, combinations of forecasts, or financial portfolios.  \n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Random covariance generation",
    "version": "0.0.15",
    "project_urls": {
        "Homepage": "https://github.com/microprediction/randomcov"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0ef2d13d2154c4c1b8f02fc633d97b9aa56f42462973fe275ad2ad51e2364055",
                "md5": "64ffd2d2669b040e5d51cbcd316f2440",
                "sha256": "5bab6b59c71a3f33034afac0c764cf9a710d8c1b1738425b937f5043fbe8f9b0"
            },
            "downloads": -1,
            "filename": "randomcov-0.0.15-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "64ffd2d2669b040e5d51cbcd316f2440",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 17798,
            "upload_time": "2024-11-17T05:02:26",
            "upload_time_iso_8601": "2024-11-17T05:02:26.919037Z",
            "url": "https://files.pythonhosted.org/packages/0e/f2/d13d2154c4c1b8f02fc633d97b9aa56f42462973fe275ad2ad51e2364055/randomcov-0.0.15-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4b5cad70db07a975f258c76adfd9030d44a6d4fe97ed954ae9fd129f4f0519bc",
                "md5": "f5fa83bc9dd1d10290c47c35b535f02b",
                "sha256": "2b2b9e38f2e3d2f506379bfd4f365a53e50e7cbb45e99e0aefaaa3ce2a094dbf"
            },
            "downloads": -1,
            "filename": "randomcov-0.0.15.tar.gz",
            "has_sig": false,
            "md5_digest": "f5fa83bc9dd1d10290c47c35b535f02b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 12507,
            "upload_time": "2024-11-17T05:02:28",
            "upload_time_iso_8601": "2024-11-17T05:02:28.475603Z",
            "url": "https://files.pythonhosted.org/packages/4b/5c/ad70db07a975f258c76adfd9030d44a6d4fe97ed954ae9fd129f4f0519bc/randomcov-0.0.15.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-17 05:02:28",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "microprediction",
    "github_project": "randomcov",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "randomcov"
}
        
Elapsed time: 0.36529s