ranx


Nameranx JSON
Version 0.3.20 PyPI version JSON
download
home_pagehttps://github.com/AmenRa/ranx
Summaryranx: A Blazing-Fast Python Library for Ranking Evaluation, Comparison, and Fusion
upload_time2024-07-01 17:40:29
maintainerNone
docs_urlNone
authorElias Bassani
requires_python>=3.8
licenseNone
keywords trec_eval information retrieval recommender systems evaluation ranking fusion metasearch numba
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
  <img src="https://repository-images.githubusercontent.com/268892956/750228ec-f3f2-465d-9c17-420c688ba2bc">
</div>

<p align="center">
  <!-- Python -->
  <a href="https://www.python.org" alt="Python"><img src="https://badges.aleen42.com/src/python.svg"></a>
  <!-- Version -->
  <a href="https://pypi.org/project/ranx/"><img src="https://img.shields.io/pypi/v/ranx?color=light-green" alt="PyPI version"></a>
  <!-- Downloads -->
  <a href="https://pepy.tech/project/ranx"><img src="https://static.pepy.tech/personalized-badge/ranx?period=total&units=international_system&left_color=grey&right_color=blue&left_text=downloads" alt="Download counter"></a>
  <!-- Docs -->
  <a href="https://amenra.github.io/ranx"><img src="https://img.shields.io/badge/docs-passing-<COLOR>.svg" alt="Documentation Status"></a>
  <!-- Black -->
  <a href="https://github.com/psf/black" alt="Code style: black"><img src="https://img.shields.io/badge/code%20style-black-000000.svg"></a>
  <!-- License -->
  <a href="https://lbesson.mit-license.org/"><img src="https://img.shields.io/badge/license-MIT-blue.svg" alt="License: MIT"></a>
  <!-- Google Colab -->
  <a href="https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/1_overview.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open in Colab"/></a>
</p>

<!-- ## πŸ”₯ News

- [month day year] -->

## ⚑️ Introduction

[ranx](https://github.com/AmenRa/ranx) ([raΕ‹ks]) is a library of fast ranking evaluation metrics implemented in [Python](https://en.wikipedia.org/wiki/Python_(programming_language)), leveraging [Numba](https://github.com/numba/numba) for high-speed [vector operations](https://en.wikipedia.org/wiki/Automatic_vectorization) and [automatic parallelization](https://en.wikipedia.org/wiki/Automatic_parallelization).
It offers a user-friendly interface to evaluate and compare [Information Retrieval](https://en.wikipedia.org/wiki/Information_retrieval) and [Recommender Systems](https://en.wikipedia.org/wiki/Recommender_system).
[ranx](https://github.com/AmenRa/ranx) allows you to perform statistical tests and export [LaTeX](https://en.wikipedia.org/wiki/LaTeX) tables for your scientific publications.
Moreover, [ranx](https://github.com/AmenRa/ranx) provides several [fusion algorithms](https://amenra.github.io/ranx/fusion) and [normalization strategies](https://amenra.github.io/ranx/normalization), and an automatic [fusion optimization](https://amenra.github.io/ranx/fusion/#optimize-fusion) functionality.
[ranx](https://github.com/AmenRa/ranx) also have a companion repository of pre-computed runs to facilitated model comparisons called [ranxhub](https://amenra.github.io/ranxhub).
On [ranxhub](https://amenra.github.io/ranxhub), you can download and share pre-computed runs for Information Retrieval datasets, such as [MSMARCO Passage Ranking](https://arxiv.org/abs/1611.09268).
[ranx](https://github.com/AmenRa/ranx) was featured in [ECIR 2022](https://ecir2022.org), [CIKM 2022](https://www.cikm2022.org), and [SIGIR 2023](https://sigir.org/sigir2023). 
 
If you use [ranx](https://github.com/AmenRa/ranx) to evaluate results or conducting experiments involving fusion for your scientific publication, please consider citing it: [evaluation bibtex](https://dblp.org/rec/conf/ecir/Bassani22.html?view=bibtex), [fusion bibtex](https://dblp.org/rec/conf/cikm/BassaniR22.html?view=bibtex), [ranxhub bibtex](https://dblp.org/rec/conf/sigir/Bassani23.html?view=bibtex).

NB: [ranx](https://github.com/AmenRa/ranx) is not suited for evaluating classifiers. Please, refer to the [FAQ](https://amenra.github.io/ranx/faq) for further details.

For a quick overview, follow the [Usage](#-usage) section.

For a in-depth overview, follow the [Examples](#-examples) section.


## ✨ Features

### Metrics
* [Hits](https://amenra.github.io/ranx/metrics/#hits)
* [Hit Rate](https://amenra.github.io/ranx/metrics/#hit-rate-success)
* [Precision](https://amenra.github.io/ranx/metrics/#precision)
* [Recall](https://amenra.github.io/ranx/metrics/#recall)
* [F1](https://amenra.github.io/ranx/metrics/#f1)
* [r-Precision](https://amenra.github.io/ranx/metrics/#r-precision)
* [Bpref](https://amenra.github.io/ranx/metrics/#bpref)
* [Rank-biased Precision (RBP)](https://amenra.github.io/ranx/metrics/#rank-biased-precision)
* [Mean Reciprocal Rank (MRR)](https://amenra.github.io/ranx/metrics/#mean-reciprocal-rank)
* [Mean Average Precision (MAP)](https://amenra.github.io/ranx/metrics/#mean-average-precision)
* [Discounted Cumulative Gain (DCG)](https://amenra.github.io/ranx/metrics/#dcg)
* [Normalized Discounted Cumulative Gain (NDCG)](https://amenra.github.io/ranx/metrics/#ndcg)

The metrics have been tested against [TREC Eval](https://github.com/usnistgov/trec_eval) for correctness.

### Statistical Tests
* [Paired Student's t-Test](https://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/t_test.htm) (default)
* [Fisher's Randomization Test](https://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/fishrand.htm)
* [Tukey's HSD Test](https://www.itl.nist.gov/div898/handbook/prc/section4/prc471.htm)

Please, refer to [Smucker et al.](https://dl.acm.org/doi/10.1145/1321440.1321528), [Carterette](https://dl.acm.org/doi/10.1145/2094072.2094076), and [Fuhr](http://www.sigir.org/wp-content/uploads/2018/01/p032.pdf) for additional information on statistical tests for Information Retrieval.

### Off-the-shelf Qrels
You can load qrels from [ir-datasets](https://ir-datasets.com) as simply as:
```python
qrels = Qrels.from_ir_datasets("msmarco-document/dev")
```
A full list of the available qrels is provided [here](https://ir-datasets.com).

### Off-the-shelf Runs
You can load runs from [ranxhub](https://amenra.github.io/ranxhub/) as simply as:
```python
run = Run.from_ranxhub("run-id")
```
A full list of the available runs is provided [here](https://amenra.github.io/ranxhub//browse).

### Fusion Algorithms

| **Name**                                                 | **Name**                                                   | **Name**                                                                | **Name**                                                     | **Name**                                                                       |
| -------------------------------------------------------- | ---------------------------------------------------------- | ----------------------------------------------------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------------------------ |
| [CombMIN](https://amenra.github.io/ranx/fusion/#combmin) | [CombMNZ](https://amenra.github.io/ranx/fusion/#combmnz)   | [RRF](https://amenra.github.io/ranx/fusion/#reciprocal-rank-fusion-rrf) | [MAPFuse](https://amenra.github.io/ranx/fusion/#mapfuse)     | [BordaFuse](https://amenra.github.io/ranx/fusion/#bordafuse)                   |
| [CombMED](https://amenra.github.io/ranx/fusion/#combmed) | [CombGMNZ](https://amenra.github.io/ranx/fusion/#combgmnz) | [RBC](https://amenra.github.io/ranx/fusion/#rank-biased-centroids-rbc)  | [PosFuse](https://amenra.github.io/ranx/fusion/#posfuse)     | [Weighted BordaFuse](https://amenra.github.io/ranx/fusion/#weighted-bordafuse) |
| [CombANZ](https://amenra.github.io/ranx/fusion/#combanz) | [ISR](https://amenra.github.io/ranx/fusion/#isr)           | [WMNZ](https://amenra.github.io/ranx/fusion/#wmnz)                      | [ProbFuse](https://amenra.github.io/ranx/fusion/#probfuse)   | [Condorcet](https://amenra.github.io/ranx/fusion/#condorcet)                   |
| [CombMAX](https://amenra.github.io/ranx/fusion/#combmax) | [Log_ISR](https://amenra.github.io/ranx/fusion/#log_isr)   | [Mixed](https://amenra.github.io/ranx/fusion/#mixed)                    | [SegFuse](https://amenra.github.io/ranx/fusion/#segfuse)     | [Weighted Condorcet](https://amenra.github.io/ranx/fusion/#weighted-condorcet) |
| [CombSUM](https://amenra.github.io/ranx/fusion/#combsum) | [LogN_ISR](https://amenra.github.io/ranx/fusion/#logn_isr) | [BayesFuse](https://amenra.github.io/ranx/fusion/#bayesfuse)            | [SlideFuse](https://amenra.github.io/ranx/fusion/#slidefuse) | [Weighted Sum](https://amenra.github.io/ranx/fusion/#wighted-sum)              |

Please, refer to the [documentation](https://amenra.github.io/ranx/fusion) for further details.

### Normalization Strategies

* [Min-Max Norm](https://amenra.github.io/ranx/normalization/#min-max-norm) 
* [Min-Max Inverted Norm](https://amenra.github.io/ranx/normalization/#min-max-inverted-norm) 
* [Max Norm](https://amenra.github.io/ranx/normalization/#sum-norm)         
* [Sum Norm](https://amenra.github.io/ranx/normalization/#rank-norm)        
* [ZMUV Norm](https://amenra.github.io/ranx/normalization/#max-norm)   
* [Rank Norm](https://amenra.github.io/ranx/normalization/#zmuv-norm)  
* [Borda Norm](https://amenra.github.io/ranx/normalization/#borda-norm)

Please, refer to the [documentation](https://amenra.github.io/ranx/fusion) for further details.


## πŸ”Œ Requirements
```bash
python>=3.8
```
As of `v.0.3.5`, [ranx](https://github.com/AmenRa/ranx) requires `python>=3.8`.

## πŸ’Ύ Installation 

```bash
pip install ranx
```

## πŸ’‘ Usage

### Create Qrels and Run
```python
from ranx import Qrels, Run

qrels_dict = { "q_1": { "d_12": 5, "d_25": 3 },
               "q_2": { "d_11": 6, "d_22": 1 } }

run_dict = { "q_1": { "d_12": 0.9, "d_23": 0.8, "d_25": 0.7,
                      "d_36": 0.6, "d_32": 0.5, "d_35": 0.4  },
             "q_2": { "d_12": 0.9, "d_11": 0.8, "d_25": 0.7,
                      "d_36": 0.6, "d_22": 0.5, "d_35": 0.4  } }

qrels = Qrels(qrels_dict)
run = Run(run_dict)
```

### Evaluate
```python
from ranx import evaluate

# Compute score for a single metric
evaluate(qrels, run, "ndcg@5")
>>> 0.7861

# Compute scores for multiple metrics at once
evaluate(qrels, run, ["map@5", "mrr"])
>>> {"map@5": 0.6416, "mrr": 0.75}
```

### Compare
```python
from ranx import compare

# Compare different runs and perform Two-sided Paired Student's t-Test
report = compare(
    qrels=qrels,
    runs=[run_1, run_2, run_3, run_4, run_5],
    metrics=["map@100", "mrr@100", "ndcg@10"],
    max_p=0.01  # P-value threshold
)
```
Output:
```python
print(report)
```
```
#    Model    MAP@100    MRR@100    NDCG@10
---  -------  --------   --------   ---------
a    model_1  0.320ᡇ     0.320ᡇ     0.368α΅‡αΆœ
b    model_2  0.233      0.234      0.239
c    model_3  0.308ᡇ     0.309ᡇ     0.330ᡇ
d    model_4  0.366α΅ƒα΅‡αΆœ   0.367α΅ƒα΅‡αΆœ   0.408α΅ƒα΅‡αΆœ
e    model_5  0.405α΅ƒα΅‡αΆœα΅ˆ  0.406α΅ƒα΅‡αΆœα΅ˆ  0.451α΅ƒα΅‡αΆœα΅ˆ
```

### Fusion
```python
from ranx import fuse, optimize_fusion

best_params = optimize_fusion(
    qrels=train_qrels,
    runs=[train_run_1, train_run_2, train_run_3],
    norm="min-max",     # The norm. to apply before fusion
    method="wsum",      # The fusion algorithm to use (Weighted Sum)
    metric="ndcg@100",  # The metric to maximize
)

combined_test_run = fuse(
    runs=[test_run_1, test_run_2, test_run_3],  
    norm="min-max",       
    method="wsum",        
    params=best_params,
)
```

## πŸ“– Examples

| Name                                                             | Link                                                                                                                                                                                   |
| ---------------------------------------------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Overview                                                         | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/1_overview.ipynb)              |
| Qrels and Run                                                    | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/2_qrels_and_run.ipynb)         |
| Evaluation                                                       | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/3_evaluation.ipynb)            |
| Comparison and Report                                            | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/4_comparison_and_report.ipynb) |
| Fusion                                                           | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/5_fusion.ipynb)                |
| Plot                                                             | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/7_plot.ipynb)                  |
| Share your runs with [ranxhub](https://amenra.github.io/ranxhub) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/6_ranxhub.ipynb)               |


## πŸ“š Documentation
Browse the [documentation](https://amenra.github.io/ranx) for more details and examples.


## πŸŽ“ Citation
If you use [ranx](https://github.com/AmenRa/ranx) to evaluate results for your scientific publication, please consider citing our [ECIR 2022](https://ecir2022.org) paper:
<details>
  <summary>BibTeX</summary>
  
  ```bibtex
  @inproceedings{ranx,
    author       = {Elias Bassani},
    title        = {ranx: {A} Blazing-Fast Python Library for Ranking Evaluation and Comparison},
    booktitle    = {{ECIR} {(2)}},
    series       = {Lecture Notes in Computer Science},
    volume       = {13186},
    pages        = {259--264},
    publisher    = {Springer},
    year         = {2022},
    doi          = {10.1007/978-3-030-99739-7\_30}
  }
  ```
</details>  

If you use the fusion functionalities provided by [ranx](https://github.com/AmenRa/ranx) for conducting the experiments of your scientific publication, please consider citing our [CIKM 2022](https://www.cikm2022.org) paper:
<details>
  <summary>BibTeX</summary>
  
  ```bibtex
  @inproceedings{ranx.fuse,
    author    = {Elias Bassani and
                Luca Romelli},
    title     = {ranx.fuse: {A} Python Library for Metasearch},
    booktitle = {{CIKM}},
    pages     = {4808--4812},
    publisher = {{ACM}},
    year      = {2022},
    doi       = {10.1145/3511808.3557207}
  }
  ```
</details>

If you use pre-computed runs from [ranxhub](https://amenra.github.io/ranxhub) to make comparison for your scientific publication, please consider citing our [SIGIR 2023](https://sigir.org/sigir2023) paper:
<details>
  <summary>BibTeX</summary>
  
  ```bibtex
  @inproceedings{ranxhub,
    author       = {Elias Bassani},
    title        = {ranxhub: An Online Repository for Information Retrieval Runs},
    booktitle    = {{SIGIR}},
    pages        = {3210--3214},
    publisher    = {{ACM}},
    year         = {2023},
    doi          = {10.1145/3539618.3591823}
  }
  ```
</details> 

## 🎁 Feature Requests
Would you like to see other features implemented? Please, open a [feature request](https://github.com/AmenRa/ranx/issues/new?assignees=&labels=enhancement&template=feature_request.md&title=%5BFeature+Request%5D+title).


## 🀘 Want to contribute?
Would you like to contribute? Please, drop me an [e-mail](mailto:elias.bssn@gmail.com?subject=[GitHub]%20ranx).


## πŸ“„ License
[ranx](https://github.com/AmenRa/ranx) is an open-sourced software licensed under the [MIT license](LICENSE).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/AmenRa/ranx",
    "name": "ranx",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "trec_eval, information retrieval, recommender systems, evaluation, ranking, fusion, metasearch, numba",
    "author": "Elias Bassani",
    "author_email": "elias.bssn@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/35/fe/4d4e7c69137afdeb5a4a85afcf04b84f087a284b7f22034e2e13e121de83/ranx-0.3.20.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n  <img src=\"https://repository-images.githubusercontent.com/268892956/750228ec-f3f2-465d-9c17-420c688ba2bc\">\n</div>\n\n<p align=\"center\">\n  <!-- Python -->\n  <a href=\"https://www.python.org\" alt=\"Python\"><img src=\"https://badges.aleen42.com/src/python.svg\"></a>\n  <!-- Version -->\n  <a href=\"https://pypi.org/project/ranx/\"><img src=\"https://img.shields.io/pypi/v/ranx?color=light-green\" alt=\"PyPI version\"></a>\n  <!-- Downloads -->\n  <a href=\"https://pepy.tech/project/ranx\"><img src=\"https://static.pepy.tech/personalized-badge/ranx?period=total&units=international_system&left_color=grey&right_color=blue&left_text=downloads\" alt=\"Download counter\"></a>\n  <!-- Docs -->\n  <a href=\"https://amenra.github.io/ranx\"><img src=\"https://img.shields.io/badge/docs-passing-<COLOR>.svg\" alt=\"Documentation Status\"></a>\n  <!-- Black -->\n  <a href=\"https://github.com/psf/black\" alt=\"Code style: black\"><img src=\"https://img.shields.io/badge/code%20style-black-000000.svg\"></a>\n  <!-- License -->\n  <a href=\"https://lbesson.mit-license.org/\"><img src=\"https://img.shields.io/badge/license-MIT-blue.svg\" alt=\"License: MIT\"></a>\n  <!-- Google Colab -->\n  <a href=\"https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/1_overview.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open in Colab\"/></a>\n</p>\n\n<!-- ## \ud83d\udd25 News\n\n- [month day year] -->\n\n## \u26a1\ufe0f Introduction\n\n[ranx](https://github.com/AmenRa/ranx) ([ra\u014bks]) is a library of fast ranking evaluation metrics implemented in [Python](https://en.wikipedia.org/wiki/Python_(programming_language)), leveraging [Numba](https://github.com/numba/numba) for high-speed [vector operations](https://en.wikipedia.org/wiki/Automatic_vectorization) and [automatic parallelization](https://en.wikipedia.org/wiki/Automatic_parallelization).\nIt offers a user-friendly interface to evaluate and compare [Information Retrieval](https://en.wikipedia.org/wiki/Information_retrieval) and [Recommender Systems](https://en.wikipedia.org/wiki/Recommender_system).\n[ranx](https://github.com/AmenRa/ranx) allows you to perform statistical tests and export [LaTeX](https://en.wikipedia.org/wiki/LaTeX) tables for your scientific publications.\nMoreover, [ranx](https://github.com/AmenRa/ranx) provides several [fusion algorithms](https://amenra.github.io/ranx/fusion) and [normalization strategies](https://amenra.github.io/ranx/normalization), and an automatic [fusion optimization](https://amenra.github.io/ranx/fusion/#optimize-fusion) functionality.\n[ranx](https://github.com/AmenRa/ranx) also have a companion repository of pre-computed runs to facilitated model comparisons called [ranxhub](https://amenra.github.io/ranxhub).\nOn [ranxhub](https://amenra.github.io/ranxhub), you can download and share pre-computed runs for Information Retrieval datasets, such as [MSMARCO Passage Ranking](https://arxiv.org/abs/1611.09268).\n[ranx](https://github.com/AmenRa/ranx) was featured in [ECIR 2022](https://ecir2022.org), [CIKM 2022](https://www.cikm2022.org), and [SIGIR 2023](https://sigir.org/sigir2023). \n \nIf you use [ranx](https://github.com/AmenRa/ranx) to evaluate results or conducting experiments involving fusion for your scientific publication, please consider citing it: [evaluation bibtex](https://dblp.org/rec/conf/ecir/Bassani22.html?view=bibtex), [fusion bibtex](https://dblp.org/rec/conf/cikm/BassaniR22.html?view=bibtex), [ranxhub bibtex](https://dblp.org/rec/conf/sigir/Bassani23.html?view=bibtex).\n\nNB: [ranx](https://github.com/AmenRa/ranx) is not suited for evaluating classifiers. Please, refer to the [FAQ](https://amenra.github.io/ranx/faq) for further details.\n\nFor a quick overview, follow the [Usage](#-usage) section.\n\nFor a in-depth overview, follow the [Examples](#-examples) section.\n\n\n## \u2728 Features\n\n### Metrics\n* [Hits](https://amenra.github.io/ranx/metrics/#hits)\n* [Hit Rate](https://amenra.github.io/ranx/metrics/#hit-rate-success)\n* [Precision](https://amenra.github.io/ranx/metrics/#precision)\n* [Recall](https://amenra.github.io/ranx/metrics/#recall)\n* [F1](https://amenra.github.io/ranx/metrics/#f1)\n* [r-Precision](https://amenra.github.io/ranx/metrics/#r-precision)\n* [Bpref](https://amenra.github.io/ranx/metrics/#bpref)\n* [Rank-biased Precision (RBP)](https://amenra.github.io/ranx/metrics/#rank-biased-precision)\n* [Mean Reciprocal Rank (MRR)](https://amenra.github.io/ranx/metrics/#mean-reciprocal-rank)\n* [Mean Average Precision (MAP)](https://amenra.github.io/ranx/metrics/#mean-average-precision)\n* [Discounted Cumulative Gain (DCG)](https://amenra.github.io/ranx/metrics/#dcg)\n* [Normalized Discounted Cumulative Gain (NDCG)](https://amenra.github.io/ranx/metrics/#ndcg)\n\nThe metrics have been tested against [TREC Eval](https://github.com/usnistgov/trec_eval) for correctness.\n\n### Statistical Tests\n* [Paired Student's t-Test](https://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/t_test.htm) (default)\n* [Fisher's Randomization Test](https://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/fishrand.htm)\n* [Tukey's HSD Test](https://www.itl.nist.gov/div898/handbook/prc/section4/prc471.htm)\n\nPlease, refer to [Smucker et al.](https://dl.acm.org/doi/10.1145/1321440.1321528), [Carterette](https://dl.acm.org/doi/10.1145/2094072.2094076), and [Fuhr](http://www.sigir.org/wp-content/uploads/2018/01/p032.pdf) for additional information on statistical tests for Information Retrieval.\n\n### Off-the-shelf Qrels\nYou can load qrels from [ir-datasets](https://ir-datasets.com) as simply as:\n```python\nqrels = Qrels.from_ir_datasets(\"msmarco-document/dev\")\n```\nA full list of the available qrels is provided [here](https://ir-datasets.com).\n\n### Off-the-shelf Runs\nYou can load runs from [ranxhub](https://amenra.github.io/ranxhub/) as simply as:\n```python\nrun = Run.from_ranxhub(\"run-id\")\n```\nA full list of the available runs is provided [here](https://amenra.github.io/ranxhub//browse).\n\n### Fusion Algorithms\n\n| **Name**                                                 | **Name**                                                   | **Name**                                                                | **Name**                                                     | **Name**                                                                       |\n| -------------------------------------------------------- | ---------------------------------------------------------- | ----------------------------------------------------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------------------------ |\n| [CombMIN](https://amenra.github.io/ranx/fusion/#combmin) | [CombMNZ](https://amenra.github.io/ranx/fusion/#combmnz)   | [RRF](https://amenra.github.io/ranx/fusion/#reciprocal-rank-fusion-rrf) | [MAPFuse](https://amenra.github.io/ranx/fusion/#mapfuse)     | [BordaFuse](https://amenra.github.io/ranx/fusion/#bordafuse)                   |\n| [CombMED](https://amenra.github.io/ranx/fusion/#combmed) | [CombGMNZ](https://amenra.github.io/ranx/fusion/#combgmnz) | [RBC](https://amenra.github.io/ranx/fusion/#rank-biased-centroids-rbc)  | [PosFuse](https://amenra.github.io/ranx/fusion/#posfuse)     | [Weighted BordaFuse](https://amenra.github.io/ranx/fusion/#weighted-bordafuse) |\n| [CombANZ](https://amenra.github.io/ranx/fusion/#combanz) | [ISR](https://amenra.github.io/ranx/fusion/#isr)           | [WMNZ](https://amenra.github.io/ranx/fusion/#wmnz)                      | [ProbFuse](https://amenra.github.io/ranx/fusion/#probfuse)   | [Condorcet](https://amenra.github.io/ranx/fusion/#condorcet)                   |\n| [CombMAX](https://amenra.github.io/ranx/fusion/#combmax) | [Log_ISR](https://amenra.github.io/ranx/fusion/#log_isr)   | [Mixed](https://amenra.github.io/ranx/fusion/#mixed)                    | [SegFuse](https://amenra.github.io/ranx/fusion/#segfuse)     | [Weighted Condorcet](https://amenra.github.io/ranx/fusion/#weighted-condorcet) |\n| [CombSUM](https://amenra.github.io/ranx/fusion/#combsum) | [LogN_ISR](https://amenra.github.io/ranx/fusion/#logn_isr) | [BayesFuse](https://amenra.github.io/ranx/fusion/#bayesfuse)            | [SlideFuse](https://amenra.github.io/ranx/fusion/#slidefuse) | [Weighted Sum](https://amenra.github.io/ranx/fusion/#wighted-sum)              |\n\nPlease, refer to the [documentation](https://amenra.github.io/ranx/fusion) for further details.\n\n### Normalization Strategies\n\n* [Min-Max Norm](https://amenra.github.io/ranx/normalization/#min-max-norm) \n* [Min-Max Inverted Norm](https://amenra.github.io/ranx/normalization/#min-max-inverted-norm) \n* [Max Norm](https://amenra.github.io/ranx/normalization/#sum-norm)         \n* [Sum Norm](https://amenra.github.io/ranx/normalization/#rank-norm)        \n* [ZMUV Norm](https://amenra.github.io/ranx/normalization/#max-norm)   \n* [Rank Norm](https://amenra.github.io/ranx/normalization/#zmuv-norm)  \n* [Borda Norm](https://amenra.github.io/ranx/normalization/#borda-norm)\n\nPlease, refer to the [documentation](https://amenra.github.io/ranx/fusion) for further details.\n\n\n## \ud83d\udd0c Requirements\n```bash\npython>=3.8\n```\nAs of `v.0.3.5`, [ranx](https://github.com/AmenRa/ranx) requires `python>=3.8`.\n\n## \ud83d\udcbe Installation \n\n```bash\npip install ranx\n```\n\n## \ud83d\udca1 Usage\n\n### Create Qrels and Run\n```python\nfrom ranx import Qrels, Run\n\nqrels_dict = { \"q_1\": { \"d_12\": 5, \"d_25\": 3 },\n               \"q_2\": { \"d_11\": 6, \"d_22\": 1 } }\n\nrun_dict = { \"q_1\": { \"d_12\": 0.9, \"d_23\": 0.8, \"d_25\": 0.7,\n                      \"d_36\": 0.6, \"d_32\": 0.5, \"d_35\": 0.4  },\n             \"q_2\": { \"d_12\": 0.9, \"d_11\": 0.8, \"d_25\": 0.7,\n                      \"d_36\": 0.6, \"d_22\": 0.5, \"d_35\": 0.4  } }\n\nqrels = Qrels(qrels_dict)\nrun = Run(run_dict)\n```\n\n### Evaluate\n```python\nfrom ranx import evaluate\n\n# Compute score for a single metric\nevaluate(qrels, run, \"ndcg@5\")\n>>> 0.7861\n\n# Compute scores for multiple metrics at once\nevaluate(qrels, run, [\"map@5\", \"mrr\"])\n>>> {\"map@5\": 0.6416, \"mrr\": 0.75}\n```\n\n### Compare\n```python\nfrom ranx import compare\n\n# Compare different runs and perform Two-sided Paired Student's t-Test\nreport = compare(\n    qrels=qrels,\n    runs=[run_1, run_2, run_3, run_4, run_5],\n    metrics=[\"map@100\", \"mrr@100\", \"ndcg@10\"],\n    max_p=0.01  # P-value threshold\n)\n```\nOutput:\n```python\nprint(report)\n```\n```\n#    Model    MAP@100    MRR@100    NDCG@10\n---  -------  --------   --------   ---------\na    model_1  0.320\u1d47     0.320\u1d47     0.368\u1d47\u1d9c\nb    model_2  0.233      0.234      0.239\nc    model_3  0.308\u1d47     0.309\u1d47     0.330\u1d47\nd    model_4  0.366\u1d43\u1d47\u1d9c   0.367\u1d43\u1d47\u1d9c   0.408\u1d43\u1d47\u1d9c\ne    model_5  0.405\u1d43\u1d47\u1d9c\u1d48  0.406\u1d43\u1d47\u1d9c\u1d48  0.451\u1d43\u1d47\u1d9c\u1d48\n```\n\n### Fusion\n```python\nfrom ranx import fuse, optimize_fusion\n\nbest_params = optimize_fusion(\n    qrels=train_qrels,\n    runs=[train_run_1, train_run_2, train_run_3],\n    norm=\"min-max\",     # The norm. to apply before fusion\n    method=\"wsum\",      # The fusion algorithm to use (Weighted Sum)\n    metric=\"ndcg@100\",  # The metric to maximize\n)\n\ncombined_test_run = fuse(\n    runs=[test_run_1, test_run_2, test_run_3],  \n    norm=\"min-max\",       \n    method=\"wsum\",        \n    params=best_params,\n)\n```\n\n## \ud83d\udcd6 Examples\n\n| Name                                                             | Link                                                                                                                                                                                   |\n| ---------------------------------------------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |\n| Overview                                                         | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/1_overview.ipynb)              |\n| Qrels and Run                                                    | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/2_qrels_and_run.ipynb)         |\n| Evaluation                                                       | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/3_evaluation.ipynb)            |\n| Comparison and Report                                            | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/4_comparison_and_report.ipynb) |\n| Fusion                                                           | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/5_fusion.ipynb)                |\n| Plot                                                             | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/7_plot.ipynb)                  |\n| Share your runs with [ranxhub](https://amenra.github.io/ranxhub) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/6_ranxhub.ipynb)               |\n\n\n## \ud83d\udcda Documentation\nBrowse the [documentation](https://amenra.github.io/ranx) for more details and examples.\n\n\n## \ud83c\udf93 Citation\nIf you use [ranx](https://github.com/AmenRa/ranx) to evaluate results for your scientific publication, please consider citing our [ECIR 2022](https://ecir2022.org) paper:\n<details>\n  <summary>BibTeX</summary>\n  \n  ```bibtex\n  @inproceedings{ranx,\n    author       = {Elias Bassani},\n    title        = {ranx: {A} Blazing-Fast Python Library for Ranking Evaluation and Comparison},\n    booktitle    = {{ECIR} {(2)}},\n    series       = {Lecture Notes in Computer Science},\n    volume       = {13186},\n    pages        = {259--264},\n    publisher    = {Springer},\n    year         = {2022},\n    doi          = {10.1007/978-3-030-99739-7\\_30}\n  }\n  ```\n</details>  \n\nIf you use the fusion functionalities provided by [ranx](https://github.com/AmenRa/ranx) for conducting the experiments of your scientific publication, please consider citing our [CIKM 2022](https://www.cikm2022.org) paper:\n<details>\n  <summary>BibTeX</summary>\n  \n  ```bibtex\n  @inproceedings{ranx.fuse,\n    author    = {Elias Bassani and\n                Luca Romelli},\n    title     = {ranx.fuse: {A} Python Library for Metasearch},\n    booktitle = {{CIKM}},\n    pages     = {4808--4812},\n    publisher = {{ACM}},\n    year      = {2022},\n    doi       = {10.1145/3511808.3557207}\n  }\n  ```\n</details>\n\nIf you use pre-computed runs from [ranxhub](https://amenra.github.io/ranxhub) to make comparison for your scientific publication, please consider citing our [SIGIR 2023](https://sigir.org/sigir2023) paper:\n<details>\n  <summary>BibTeX</summary>\n  \n  ```bibtex\n  @inproceedings{ranxhub,\n    author       = {Elias Bassani},\n    title        = {ranxhub: An Online Repository for Information Retrieval Runs},\n    booktitle    = {{SIGIR}},\n    pages        = {3210--3214},\n    publisher    = {{ACM}},\n    year         = {2023},\n    doi          = {10.1145/3539618.3591823}\n  }\n  ```\n</details> \n\n## \ud83c\udf81 Feature Requests\nWould you like to see other features implemented? Please, open a [feature request](https://github.com/AmenRa/ranx/issues/new?assignees=&labels=enhancement&template=feature_request.md&title=%5BFeature+Request%5D+title).\n\n\n## \ud83e\udd18 Want to contribute?\nWould you like to contribute? Please, drop me an [e-mail](mailto:elias.bssn@gmail.com?subject=[GitHub]%20ranx).\n\n\n## \ud83d\udcc4 License\n[ranx](https://github.com/AmenRa/ranx) is an open-sourced software licensed under the [MIT license](LICENSE).\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "ranx: A Blazing-Fast Python Library for Ranking Evaluation, Comparison, and Fusion",
    "version": "0.3.20",
    "project_urls": {
        "Homepage": "https://github.com/AmenRa/ranx"
    },
    "split_keywords": [
        "trec_eval",
        " information retrieval",
        " recommender systems",
        " evaluation",
        " ranking",
        " fusion",
        " metasearch",
        " numba"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1e3053f41b7b728a48da8974075f56c57200d7b11e4e9fa93be3cabf8218dc0c",
                "md5": "98f25118207f1580af5b72c8253a9019",
                "sha256": "e056e4d5981b0328b045868cc7064fc57a545f36009fbe9bb602295ec33335de"
            },
            "downloads": -1,
            "filename": "ranx-0.3.20-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "98f25118207f1580af5b72c8253a9019",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 99318,
            "upload_time": "2024-07-01T17:40:27",
            "upload_time_iso_8601": "2024-07-01T17:40:27.095952Z",
            "url": "https://files.pythonhosted.org/packages/1e/30/53f41b7b728a48da8974075f56c57200d7b11e4e9fa93be3cabf8218dc0c/ranx-0.3.20-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "35fe4d4e7c69137afdeb5a4a85afcf04b84f087a284b7f22034e2e13e121de83",
                "md5": "e7403e7ad07211837e7590520de9710d",
                "sha256": "8afc6f2042c40645e5d1fd80c35ed75a885e18bd2db7e95cc7ec32a0b41e59ea"
            },
            "downloads": -1,
            "filename": "ranx-0.3.20.tar.gz",
            "has_sig": false,
            "md5_digest": "e7403e7ad07211837e7590520de9710d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 51526,
            "upload_time": "2024-07-01T17:40:29",
            "upload_time_iso_8601": "2024-07-01T17:40:29.448637Z",
            "url": "https://files.pythonhosted.org/packages/35/fe/4d4e7c69137afdeb5a4a85afcf04b84f087a284b7f22034e2e13e121de83/ranx-0.3.20.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-01 17:40:29",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "AmenRa",
    "github_project": "ranx",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "ranx"
}
        
Elapsed time: 0.36736s