Name | rapid-models JSON |
Version |
0.1.7
JSON |
| download |
home_page | https://github.com/RaPiD-models/rapid_models |
Summary | Python package (Reciprocal Data and Physics models - RaPiD-models) to support more specific, accurate and timely decision support in operation of safety-critical systems, by combining physics-based modelling with data-driven machine learning and probabilistic uncertainty assessment. |
upload_time | 2023-01-05 11:39:19 |
maintainer | |
docs_url | None |
author | Simen Eldevik |
requires_python | >=3.6 |
license | GNU General Public License v3 |
keywords |
rapid_models
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# rapid-models
Python package (Reciprocal Data and Physics models - RaPiD-models) to support more specific, accurate and timely decision support in operation of safety-critical systems, by combining physics-based modelling with data-driven machine learning and probabilistic uncertainty assessment.
* Free software: GNU General Public License v3
* Documentation: https://rapid-models.readthedocs.io.
## Quickstart
```sh
$ git clone https://github.com/RaPiD-models/rapid_models.git
$ cd rapid_models
$ pip install -e .
$ rapid_models --help
```
To develop, test, generate documentation, etc.
```sh
$ pip install -r requirements_dev.txt
```
To generate documentation do, either:
```sh
$ cd docs
$ make docs html
```
or
```sh
$ cd docs
$ sphinx-build -M html . build
```
The html documentation will then be avaliable in `docs/build/html/index.html`
## Features
FIXME: add features
## Credits
This package was created with Cookiecutter and the `audreyr/cookiecutter-pypackage` project template.
* [Cookiecutter](https://github.com/audreyr/cookiecutter)
* [`audreyr/cookiecutter-pypackage`](https://github.com/audreyr/cookiecutter-pypackage)
=======
History
=======
0.1.0 (2021-09-21)
------------------
* First release on PyPI.
Raw data
{
"_id": null,
"home_page": "https://github.com/RaPiD-models/rapid_models",
"name": "rapid-models",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": "",
"keywords": "rapid_models",
"author": "Simen Eldevik",
"author_email": "simen.eldevik@dnv.com",
"download_url": "https://files.pythonhosted.org/packages/b6/ec/5425f211422159247b8dee4cfe64428a20cf66d4209e51f625f6360aa7e7/rapid_models-0.1.7.tar.gz",
"platform": null,
"description": "# rapid-models\nPython package (Reciprocal Data and Physics models - RaPiD-models) to support more specific, accurate and timely decision support in operation of safety-critical systems, by combining physics-based modelling with data-driven machine learning and probabilistic uncertainty assessment.\n\n\n* Free software: GNU General Public License v3\n* Documentation: https://rapid-models.readthedocs.io.\n\n\n\n## Quickstart\n```sh\n$ git clone https://github.com/RaPiD-models/rapid_models.git\n$ cd rapid_models\n$ pip install -e .\n$ rapid_models --help\n```\n\n\nTo develop, test, generate documentation, etc.\n```sh\n$ pip install -r requirements_dev.txt\n```\n \n\nTo generate documentation do, either:\n```sh\n$ cd docs\n$ make docs html \n```\nor\n```sh\n$ cd docs\n$ sphinx-build -M html . build\n```\nThe html documentation will then be avaliable in `docs/build/html/index.html`\n\n\n## Features\nFIXME: add features\n\n\n## Credits\nThis package was created with Cookiecutter and the `audreyr/cookiecutter-pypackage` project template.\n* [Cookiecutter](https://github.com/audreyr/cookiecutter)\n* [`audreyr/cookiecutter-pypackage`](https://github.com/audreyr/cookiecutter-pypackage) \n\n\n=======\nHistory\n=======\n\n0.1.0 (2021-09-21)\n------------------\n\n* First release on PyPI.\n",
"bugtrack_url": null,
"license": "GNU General Public License v3",
"summary": "Python package (Reciprocal Data and Physics models - RaPiD-models) to support more specific, accurate and timely decision support in operation of safety-critical systems, by combining physics-based modelling with data-driven machine learning and probabilistic uncertainty assessment.",
"version": "0.1.7",
"split_keywords": [
"rapid_models"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "c6ac9c44e2824da51829bb786b43edeba235eaf908a6bfeaf60261c0d4bdfbd2",
"md5": "672be7d9c850b40624e054b2dbf70aad",
"sha256": "102e7385d5a2040e2adbaca076d9bc8ae1fceff3912fab06490ff298aa260f92"
},
"downloads": -1,
"filename": "rapid_models-0.1.7-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "672be7d9c850b40624e054b2dbf70aad",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": ">=3.6",
"size": 23004,
"upload_time": "2023-01-05T11:39:18",
"upload_time_iso_8601": "2023-01-05T11:39:18.082910Z",
"url": "https://files.pythonhosted.org/packages/c6/ac/9c44e2824da51829bb786b43edeba235eaf908a6bfeaf60261c0d4bdfbd2/rapid_models-0.1.7-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b6ec5425f211422159247b8dee4cfe64428a20cf66d4209e51f625f6360aa7e7",
"md5": "5397ec800b1600735d4a7740479127fa",
"sha256": "92fa17d4e5074fae9400ac080af8117e0656dd92069d17d51824cb38e7393a89"
},
"downloads": -1,
"filename": "rapid_models-0.1.7.tar.gz",
"has_sig": false,
"md5_digest": "5397ec800b1600735d4a7740479127fa",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 37877,
"upload_time": "2023-01-05T11:39:19",
"upload_time_iso_8601": "2023-01-05T11:39:19.399605Z",
"url": "https://files.pythonhosted.org/packages/b6/ec/5425f211422159247b8dee4cfe64428a20cf66d4209e51f625f6360aa7e7/rapid_models-0.1.7.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-01-05 11:39:19",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "RaPiD-models",
"github_project": "rapid_models",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"tox": true,
"lcname": "rapid-models"
}