Name | rathureqpy JSON |
Version |
0.2.0
JSON |
| download |
home_page | None |
Summary | Manipulating lists, basic mathematical functions and LaTeX-like writing |
upload_time | 2025-09-18 21:43:10 |
maintainer | None |
docs_url | None |
author | Arthur Quersin |
requires_python | None |
license | MIT |
keywords |
lists
math
matrix
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Rathureqpy - A Python Utility Library
Rathureqpy is a Python library that provides a set of useful functions for a variety of tasks including list manipulation, mathematical operations, logical operations, statistical measures, and more.
## Installation
You can install Rathureqpy by running:
``bash
pip install rathureqpy
``
## Features
### List Operations
- **zero(number)**: Returns a list of zeros with the specified length.
- **prod(L, a)**: Returns a new list with each element of `L` multiplied by `a`.
- **addl(*args)**: Adds corresponding elements from multiple lists of equal length.
- **linespace(start, end, step)**: Generates a list of evenly spaced values between `start` and `end` with a given `step`.
- **array(start, end, n)**: Generates an array of `n` evenly spaced values between `start` and `end`.
- **uni(*lists)**: Flattens multiple lists into a single list.
- **uniwd(*lists)**: Flattens multiple lists into a single list and removes duplicates.
- **inter(*lists)**: Returns the intersection of multiple lists.
- **uniq(L)**: Returns a list with unique elements from `L`.
- **moy(L)**: Returns the mean of a list `L`.
- **sum_int(start, end)**: Returns the sum of integers between `start` and `end`.
- **randl(min, max, n)**: Generates a list of `n` random integers between `min` and `max`.
- **shuffle_list(L)**: Returns a shuffled version of `L`.
- **filtrer(L, condition)**: Filters `L` based on a condition.
- **chunk(L, n)**: Splits `L` into chunks of size `n`.
- **partition(L, condition)**: Partitions `L` into two lists based on a condition.
### Logical Operations
- **binr(n)**: Converts an integer `n` to its binary representation as a string.
- **change_base(value, inp_base, out_base)**: Converts `value` from `inp_base` to `out_base`.
- **divisor_list(n)**: Returns a list of divisors of `n`.
- **dicho(start, end, f, eps)**: Performs binary search to find the root of the function `f` in the interval `[start, end]` with an error tolerance `eps`.
- **size(point_A, point_B)**: Calculates the distance between two points `A` and `B` in a 2D space.
### Constants
- **pi**: Returns the constant `\u03C0`.
- **e**: Returns the constant `e`.
- **tau**: Returns the constant `\u03C4` (2\u03C0).
### Mathematical Operations
- **abs(x)**: Returns the absolute value of `x`.
- **cos(x)**: Returns the cosine of `x`.
- **sin(x)**: Returns the sine of `x`.
- **log(x, base=e())**: Returns the logarithm of `x` to the specified `base`.
- **exp(x)**: Returns the exponential of `x`.
- **sqrt(x)**: Returns the square root of `x`.
- **facto(n)**: Returns the factorial of `n`.
- **floor(x)**: Returns the largest integer less than or equal to `x`.
- **ceil(x)**: Returns the smallest integer greater than or equal to `x`.
- **rint(x)**: Returns the integer closest to `x` (rounding halfway cases away from zero).
- **gcd(a, b)**: Returns the greatest common divisor of `a` and `b`.
- **lcm(a, b)**: Returns the least common multiple of `a` and `b`.
- **is_prime(n)**: Checks if `n` is a prime number.
- **integ(f, a, b, N)** : Calculates the integral of `f` from `a` to `b` using the trapezoidal rule, with a sign adjustment if `a > b`
### Statistical Measures
- **variance(L)**: Returns the variance of the list `L`.
- **ecart_type(L)**: Returns the standard deviation of the list `L`.
- **mediane(L)**: Returns the median of the list `L`.
- **decomp(n)**: Returns the prime factorization of `n` as a list of tuples.
- **list_prime(n)**: Returns a list of all prime numbers up to `n`.
- **pascal_row(n)**: Returns the `n`-th row of Pascal's Triangle.
### Matrix
- **mat(data)**: Creates a matrix from a list of lists `data`. All rows must have the same length.
- **__getitem__(idx)**: Returns a row if `idx` is an integer, or a single element if `idx` is a tuple `(i,j)`.
- **__setitem__(idx, value)**: Sets a row if `idx` is an integer, or a single element if `idx` is a tuple `(i,j)`.
- **__len__()**: Returns the number of rows of the matrix.
- **size**: Returns a tuple `(rows, columns)` representing the matrix size.
- **__add__(other)**: Element-wise addition of two matrices of the same size.
- **__radd__(other)**: Right-side addition (supports `sum()`).
- **__sub__(other)**: Element-wise subtraction of two matrices of the same size.
- **__mul__(other)**: Multiplies the matrix by a scalar or another matrix (matrix multiplication).
- **__rmul__(other)**: Right-side multiplication.
- **__truediv__(scalar)**: Divides the matrix by a scalar.
- **__pow__(n)**: Raises a square matrix to a non-negative integer power.
- **__neg__()**: Returns the negation of the matrix.
- **__eq__(other)**: Returns True if two matrices are equal.
- **__ne__(other)**: Returns True if two matrices are not equal.
- **T**: Returns the transpose of the matrix.
- **copy()**: Returns a copy of the matrix.
- **trace**: Returns the trace of a square matrix.
- **tolist()**: Returns the matrix as a list of lists.
- **__iter__()**: Returns an iterator over the rows of the matrix.
- **flatten(as_tuple=False)**: Returns all elements as a flat generator, or as a tuple if `as_tuple=True`.
- **diag_mat()**: Returns a diagonal matrix with the same diagonal elements as the current square matrix.
- **diag_vec(column=True)**: Returns the diagonal elements as a column vector (default) or row vector if `column=False`.
- **replace(old_value, new_value)**: Replaces all occurrences of `old_value` with `new_value` in-place.
- **replaced(old_value, new_value)**: Returns a new matrix with `old_value` replaced by `new_value`.
- **map(f)**: Applies a function `f` to each element of the matrix and returns a new matrix.
- **det()**: Returns the determinant of a square matrix.
- **rank()**: Returns the rank of the matrix using Gaussian elimination.
- **__repr__()**: Returns the official string representation of the matrix.
- **__str__()**: Returns a readable string representation of the matrix.
- **zero(n, p)**: Returns a zero matrix of size `n x p`.
- **I(n)**: Returns an identity matrix of size `n x n`.
- **diagonal(values)**: Returns a diagonal matrix with the given sequence of `values`.
- **full(n, p=0, value=1)**: Returns a matrix of size `n x p` filled with `value`. If `p` is 0, creates a square matrix `n x n`.
- **random(n, p=0, low=-10, high=10)**: Returns a random integer matrix of size `n x p` (square if `p=0`) with entries in `[low, high]`.
### Mathematical Language LaTeX-like
- **lat(expr)**: Converts a simple LaTeX-like string `expr` into Unicode math characters. Supports: exponents (`^`), indices (`_`), square roots (`sqrt(...)`), sums (`sum{...}^...`), products (`prod{...}^...`), integrals (`int`), and fractions (`frac{...}{...}`).
- **symbol(sym)**: Returns the Unicode math symbol corresponding to the LaTeX command `sym`. If the command is unknown, returns `[unknown: sym]`.
- **dot(text)**: Returns the input string `text` with a dot placed above each character.
- **vec(text)**: Returns the input string `text` with a bar placed above each character.
- **greek(expr)**: Converts the Greek letter name `expr` into its corresponding Unicode symbol. Returns an empty string if the name is not recognized.
- **italic(text)**: Converts the input string `text` to italic Unicode mathematical characters. Only English letters (a-z, A-Z) are transformed.
- **bold(text)**: Converts the input string `text` to bold Unicode mathematical characters. Only English letters (a-z, A-Z) are transformed.
- **mathbb(text)**: Converts the input string `text` to double-struck (blackboard bold) Unicode characters. Only English letters (a-z, A-Z) are transformed.
- **cursive(text)**: Converts the input string `text` to cursive (script) Unicode characters. Only English letters (a-z, A-Z) are transformed.
## Contribute and Bugs
If you encounter any bugs or would like to contribute to the project, feel free to open an issue or submit a pull request. Contributions are always welcome!
**email** : arthur.quersin@gmail.com
Made by Arthur Quersin
Change log
==========
0.0.1 (26/01/2025)
-------------------
First release
0.0.2 (27/01/2025)
-------------------
Second release (stable)
0.0.3 (31/01/2025)
-------------------
Third release (stable, I hope)
0.0.4 (31/01/2025)
-------------------
Fourth release (stable, I hope 2)
0.0.5 (02/02/2025)
-------------------
Fith release, with a lot of new fonctions
0.1.2 (18/02/2025)
-------------------
A new release with, again, a lot of new and useful functions including :
- subindex
- pascal_row
- list_prime
- decomp
0.1.21 (24/03/2025)
-------------------
Fixing readme file
0.1.22 (24/03/2025)
-------------------
Fixing readme file
0.1.32 (29/04/2025)
-------------------
- Removed `apply()` because it duplicated functionality of `map()`
- Changed `rathureqpy.pi()`, `rathureqpy.e()`, and `rathureqpy.tau()` to `rathureqpy.pi`, `rathureqpy.e`, and `rathureqpy.tau` (variables instead of functions)
- Added `integ(f, a, b, N)` to calculate the integral using the trapezoidal rule, with sign adjustment if `a > b`
0.1.40 (12/06/2025)
-------------------
A new release with, again, a lot of new and useful functions for mathematical writing !
- lat
- symbol
- dot
- vec
- greek
- italic
- bold
- mathbb
- cursive
0.1.41 (13/06/2025)
-------------------
Fixing `lat` (exponent and index) and adding `inf` to `symbol`
0.2.0 (18/09/2025)
-------------------
A new release with, the addition of Matrix!
- mat
- __getitem__
- __setitem__
- __len__
- size
- __add__
- __radd__
- __sub__
- __mul__
- __rmul__
- __truediv__
- __pow__
- __neg__
- __eq__
- __ne__
- T
- copy
- trace
- tolist
- __iter__
- flatten
- diag_mat
- diag_vec
- replace
- replaced
- map
- det
- rank
- __repr__
- __str__
- zero
- I
- diagonal
- full
- random
Raw data
{
"_id": null,
"home_page": null,
"name": "rathureqpy",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "lists, math, matrix",
"author": "Arthur Quersin",
"author_email": "arthur.quersin@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/ba/34/eed60212943e85df45a6b493aa8ddc49e04aa7b38046966f0bc948f15cfb/rathureqpy-0.2.0.tar.gz",
"platform": null,
"description": "# Rathureqpy - A Python Utility Library\r\n\r\nRathureqpy is a Python library that provides a set of useful functions for a variety of tasks including list manipulation, mathematical operations, logical operations, statistical measures, and more.\r\n\r\n## Installation\r\n\r\nYou can install Rathureqpy by running:\r\n\r\n``bash\r\npip install rathureqpy\r\n``\r\n\r\n## Features\r\n\r\n### List Operations\r\n\r\n- **zero(number)**: Returns a list of zeros with the specified length.\r\n\r\n- **prod(L, a)**: Returns a new list with each element of `L` multiplied by `a`.\r\n\r\n- **addl(*args)**: Adds corresponding elements from multiple lists of equal length.\r\n\r\n- **linespace(start, end, step)**: Generates a list of evenly spaced values between `start` and `end` with a given `step`.\r\n\r\n- **array(start, end, n)**: Generates an array of `n` evenly spaced values between `start` and `end`.\r\n\r\n- **uni(*lists)**: Flattens multiple lists into a single list.\r\n\r\n- **uniwd(*lists)**: Flattens multiple lists into a single list and removes duplicates.\r\n\r\n- **inter(*lists)**: Returns the intersection of multiple lists.\r\n\r\n- **uniq(L)**: Returns a list with unique elements from `L`.\r\n\r\n- **moy(L)**: Returns the mean of a list `L`.\r\n\r\n- **sum_int(start, end)**: Returns the sum of integers between `start` and `end`.\r\n\r\n- **randl(min, max, n)**: Generates a list of `n` random integers between `min` and `max`.\r\n\r\n- **shuffle_list(L)**: Returns a shuffled version of `L`.\r\n\r\n- **filtrer(L, condition)**: Filters `L` based on a condition.\r\n\r\n- **chunk(L, n)**: Splits `L` into chunks of size `n`.\r\n\r\n- **partition(L, condition)**: Partitions `L` into two lists based on a condition.\r\n\r\n\r\n### Logical Operations\r\n\r\n- **binr(n)**: Converts an integer `n` to its binary representation as a string.\r\n\r\n- **change_base(value, inp_base, out_base)**: Converts `value` from `inp_base` to `out_base`.\r\n\r\n- **divisor_list(n)**: Returns a list of divisors of `n`.\r\n\r\n- **dicho(start, end, f, eps)**: Performs binary search to find the root of the function `f` in the interval `[start, end]` with an error tolerance `eps`.\r\n\r\n- **size(point_A, point_B)**: Calculates the distance between two points `A` and `B` in a 2D space.\r\n\r\n### Constants\r\n\r\n- **pi**: Returns the constant `\\u03C0`.\r\n\r\n- **e**: Returns the constant `e`.\r\n\r\n- **tau**: Returns the constant `\\u03C4` (2\\u03C0).\r\n\r\n### Mathematical Operations\r\n\r\n- **abs(x)**: Returns the absolute value of `x`.\r\n\r\n- **cos(x)**: Returns the cosine of `x`.\r\n\r\n- **sin(x)**: Returns the sine of `x`.\r\n\r\n- **log(x, base=e())**: Returns the logarithm of `x` to the specified `base`.\r\n\r\n- **exp(x)**: Returns the exponential of `x`.\r\n\r\n- **sqrt(x)**: Returns the square root of `x`.\r\n\r\n- **facto(n)**: Returns the factorial of `n`.\r\n\r\n- **floor(x)**: Returns the largest integer less than or equal to `x`.\r\n\r\n- **ceil(x)**: Returns the smallest integer greater than or equal to `x`.\r\n\r\n- **rint(x)**: Returns the integer closest to `x` (rounding halfway cases away from zero).\r\n\r\n- **gcd(a, b)**: Returns the greatest common divisor of `a` and `b`.\r\n\r\n- **lcm(a, b)**: Returns the least common multiple of `a` and `b`.\r\n\r\n- **is_prime(n)**: Checks if `n` is a prime number.\r\n\r\n- **integ(f, a, b, N)** : Calculates the integral of `f` from `a` to `b` using the trapezoidal rule, with a sign adjustment if `a > b`\r\n\r\n### Statistical Measures\r\n\r\n- **variance(L)**: Returns the variance of the list `L`.\r\n\r\n- **ecart_type(L)**: Returns the standard deviation of the list `L`.\r\n\r\n- **mediane(L)**: Returns the median of the list `L`.\r\n\r\n- **decomp(n)**: Returns the prime factorization of `n` as a list of tuples.\r\n\r\n- **list_prime(n)**: Returns a list of all prime numbers up to `n`.\r\n\r\n- **pascal_row(n)**: Returns the `n`-th row of Pascal's Triangle.\r\n\r\n\r\n### Matrix\r\n\r\n- **mat(data)**: Creates a matrix from a list of lists `data`. All rows must have the same length.\r\n\r\n - **__getitem__(idx)**: Returns a row if `idx` is an integer, or a single element if `idx` is a tuple `(i,j)`.\r\n\r\n - **__setitem__(idx, value)**: Sets a row if `idx` is an integer, or a single element if `idx` is a tuple `(i,j)`.\r\n\r\n - **__len__()**: Returns the number of rows of the matrix.\r\n\r\n - **size**: Returns a tuple `(rows, columns)` representing the matrix size.\r\n\r\n - **__add__(other)**: Element-wise addition of two matrices of the same size.\r\n\r\n - **__radd__(other)**: Right-side addition (supports `sum()`).\r\n\r\n - **__sub__(other)**: Element-wise subtraction of two matrices of the same size.\r\n\r\n - **__mul__(other)**: Multiplies the matrix by a scalar or another matrix (matrix multiplication).\r\n\r\n - **__rmul__(other)**: Right-side multiplication.\r\n\r\n - **__truediv__(scalar)**: Divides the matrix by a scalar.\r\n\r\n - **__pow__(n)**: Raises a square matrix to a non-negative integer power.\r\n\r\n - **__neg__()**: Returns the negation of the matrix.\r\n\r\n - **__eq__(other)**: Returns True if two matrices are equal.\r\n\r\n - **__ne__(other)**: Returns True if two matrices are not equal.\r\n\r\n - **T**: Returns the transpose of the matrix.\r\n\r\n - **copy()**: Returns a copy of the matrix.\r\n\r\n - **trace**: Returns the trace of a square matrix.\r\n\r\n - **tolist()**: Returns the matrix as a list of lists.\r\n\r\n - **__iter__()**: Returns an iterator over the rows of the matrix.\r\n\r\n - **flatten(as_tuple=False)**: Returns all elements as a flat generator, or as a tuple if `as_tuple=True`.\r\n\r\n - **diag_mat()**: Returns a diagonal matrix with the same diagonal elements as the current square matrix.\r\n\r\n - **diag_vec(column=True)**: Returns the diagonal elements as a column vector (default) or row vector if `column=False`.\r\n\r\n - **replace(old_value, new_value)**: Replaces all occurrences of `old_value` with `new_value` in-place.\r\n\r\n - **replaced(old_value, new_value)**: Returns a new matrix with `old_value` replaced by `new_value`.\r\n\r\n - **map(f)**: Applies a function `f` to each element of the matrix and returns a new matrix.\r\n\r\n - **det()**: Returns the determinant of a square matrix.\r\n\r\n - **rank()**: Returns the rank of the matrix using Gaussian elimination.\r\n\r\n - **__repr__()**: Returns the official string representation of the matrix.\r\n\r\n - **__str__()**: Returns a readable string representation of the matrix.\r\n\r\n- **zero(n, p)**: Returns a zero matrix of size `n x p`.\r\n\r\n- **I(n)**: Returns an identity matrix of size `n x n`.\r\n\r\n- **diagonal(values)**: Returns a diagonal matrix with the given sequence of `values`.\r\n\r\n- **full(n, p=0, value=1)**: Returns a matrix of size `n x p` filled with `value`. If `p` is 0, creates a square matrix `n x n`.\r\n\r\n- **random(n, p=0, low=-10, high=10)**: Returns a random integer matrix of size `n x p` (square if `p=0`) with entries in `[low, high]`.\r\n\r\n\r\n### Mathematical Language LaTeX-like\r\n\r\n- **lat(expr)**: Converts a simple LaTeX-like string `expr` into Unicode math characters. Supports: exponents (`^`), indices (`_`), square roots (`sqrt(...)`), sums (`sum{...}^...`), products (`prod{...}^...`), integrals (`int`), and fractions (`frac{...}{...}`).\r\n\r\n- **symbol(sym)**: Returns the Unicode math symbol corresponding to the LaTeX command `sym`. If the command is unknown, returns `[unknown: sym]`.\r\n\r\n- **dot(text)**: Returns the input string `text` with a dot placed above each character.\r\n\r\n- **vec(text)**: Returns the input string `text` with a bar placed above each character.\r\n\r\n- **greek(expr)**: Converts the Greek letter name `expr` into its corresponding Unicode symbol. Returns an empty string if the name is not recognized.\r\n\r\n- **italic(text)**: Converts the input string `text` to italic Unicode mathematical characters. Only English letters (a-z, A-Z) are transformed.\r\n\r\n- **bold(text)**: Converts the input string `text` to bold Unicode mathematical characters. Only English letters (a-z, A-Z) are transformed.\r\n\r\n- **mathbb(text)**: Converts the input string `text` to double-struck (blackboard bold) Unicode characters. Only English letters (a-z, A-Z) are transformed.\r\n\r\n- **cursive(text)**: Converts the input string `text` to cursive (script) Unicode characters. Only English letters (a-z, A-Z) are transformed.\r\n\r\n\r\n## Contribute and Bugs\r\n\r\nIf you encounter any bugs or would like to contribute to the project, feel free to open an issue or submit a pull request. Contributions are always welcome!\r\n\r\n**email** : arthur.quersin@gmail.com\r\n\r\nMade by Arthur Quersin\r\n\r\n\r\nChange log \r\n==========\r\n\r\n0.0.1 (26/01/2025)\r\n-------------------\r\nFirst release\r\n\r\n0.0.2 (27/01/2025)\r\n-------------------\r\nSecond release (stable)\r\n\r\n0.0.3 (31/01/2025)\r\n-------------------\r\nThird release (stable, I hope)\r\n\r\n0.0.4 (31/01/2025)\r\n-------------------\r\nFourth release (stable, I hope 2)\r\n\r\n0.0.5 (02/02/2025)\r\n-------------------\r\nFith release, with a lot of new fonctions\r\n\r\n0.1.2 (18/02/2025)\r\n-------------------\r\nA new release with, again, a lot of new and useful functions including :\r\n \r\n - subindex\r\n\r\n - pascal_row\r\n\r\n - list_prime\r\n \r\n - decomp\r\n \r\n0.1.21 (24/03/2025)\r\n-------------------\r\nFixing readme file\r\n\r\n0.1.22 (24/03/2025)\r\n-------------------\r\nFixing readme file\r\n\r\n0.1.32 (29/04/2025)\r\n-------------------\r\n- Removed `apply()` because it duplicated functionality of `map()`\r\n\r\n- Changed `rathureqpy.pi()`, `rathureqpy.e()`, and `rathureqpy.tau()` to `rathureqpy.pi`, `rathureqpy.e`, and `rathureqpy.tau` (variables instead of functions)\r\n\r\n- Added `integ(f, a, b, N)` to calculate the integral using the trapezoidal rule, with sign adjustment if `a > b`\r\n\r\n0.1.40 (12/06/2025)\r\n-------------------\r\nA new release with, again, a lot of new and useful functions for mathematical writing !\r\n \r\n - lat\r\n\r\n - symbol\r\n\r\n - dot\r\n\r\n - vec\r\n\r\n - greek\r\n\r\n - italic\r\n\r\n - bold\r\n\r\n - mathbb\r\n\r\n - cursive\r\n\r\n0.1.41 (13/06/2025)\r\n-------------------\r\nFixing `lat` (exponent and index) and adding `inf` to `symbol`\r\n\r\n0.2.0 (18/09/2025)\r\n-------------------\r\nA new release with, the addition of Matrix!\r\n \r\n - mat\r\n\r\n - __getitem__\r\n\r\n - __setitem__\r\n\r\n - __len__\r\n\r\n - size\r\n \r\n - __add__\r\n \r\n - __radd__\r\n \r\n - __sub__\r\n \r\n - __mul__\r\n \r\n - __rmul__\r\n \r\n - __truediv__\r\n \r\n - __pow__\r\n \r\n - __neg__\r\n \r\n - __eq__\r\n \r\n - __ne__\r\n \r\n - T\r\n \r\n - copy\r\n \r\n - trace\r\n \r\n - tolist\r\n \r\n - __iter__\r\n \r\n - flatten\r\n \r\n - diag_mat\r\n \r\n - diag_vec\r\n \r\n - replace\r\n \r\n - replaced\r\n \r\n - map\r\n \r\n - det\r\n \r\n - rank\r\n \r\n - __repr__\r\n \r\n - __str__\r\n\r\n - zero\r\n\r\n - I\r\n\r\n - diagonal\r\n\r\n - full\r\n\r\n - random\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Manipulating lists, basic mathematical functions and LaTeX-like writing",
"version": "0.2.0",
"project_urls": null,
"split_keywords": [
"lists",
" math",
" matrix"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "ba34eed60212943e85df45a6b493aa8ddc49e04aa7b38046966f0bc948f15cfb",
"md5": "25b9498f93e2abe07cbf8c8ced79351c",
"sha256": "c21e7dd1ccf813f500875546a2b3db74e1a4e0a1e162cb01d4ac58cd9e610f1a"
},
"downloads": -1,
"filename": "rathureqpy-0.2.0.tar.gz",
"has_sig": false,
"md5_digest": "25b9498f93e2abe07cbf8c8ced79351c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 16738,
"upload_time": "2025-09-18T21:43:10",
"upload_time_iso_8601": "2025-09-18T21:43:10.342950Z",
"url": "https://files.pythonhosted.org/packages/ba/34/eed60212943e85df45a6b493aa8ddc49e04aa7b38046966f0bc948f15cfb/rathureqpy-0.2.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-09-18 21:43:10",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "rathureqpy"
}