rcpann


Namercpann JSON
Version 0.0.7 PyPI version JSON
download
home_page
SummaryRing Current Proton Artifician Neural Network Model
upload_time2023-12-27 20:51:27
maintainer
docs_urlNone
authorJinxing Li
requires_python
license
keywords python ring current space space physics radiation belt magnetosphere
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# RCPANN - Ring Current Proton ANN Model

[![N|Solid](https://cldup.com/dTxpPi9lDf.thumb.png)](https://nodesource.com/products/nsolid)

The Ring Current Proton Artificial Neural Network (RCPANN) model specifies the ring current proton distribution using artificial neural network (multi-layer perceptron).

This model is based on RBSP/RBSPICE measurements from 2013-2018. The RBSPICE measures proton flux at 14 energy channels from 45 keV to 598 keV, and this model provides proton spin-averaged flux in those 14 energy channels. The data for the training and modeling are available at https://doi.org/10.5281/zenodo.7651736. The training program are available ar https://github.com/jinxingli87/RCPANN.

## How to use the RCPANN model
First, pip install the 'rcpann' package. Tensorflow and Pytorch packages are required. 
```sh
pip3 install rcpann
```

## ✨ Example 1: Predict proton flux at a specific moment
Input: iek, coord in shape of either (4,) or (1,4), and tstr in form of 'yyyy-mm-dd hh:mm:ss'
The iek should be a number between 0 and 13, and the corresponding energy is listed below.
|iek|0|1|2|3|4|5|6|7|8|9|10|11|12|13|
| ------ | ------ |------ | ------ |------ | ------ |------ | ------ |------ | ------ |------ | ------ |------ | ------ |------ |
|Energy (keV)|45|55|67|82|99|121|148|181|220|269|328|400|489|598|
```python3
from rcpann import *
iek=1
coord=np.array([3.5, 0.0, 1.0, 0.0]) # L=3.5, cos(theta)=0, sin(theta)=1.0, Lat=0.0, which means MLT = 6h
print(pflux(iek,coord,tstr = '2017-03-01 22:42:00'))
```

## ✨ Example 2. Model the global distribution of proton flux
```python3
from rcpann import *
iek=1
tstr1='2017-03-01 22:42:00'
tstr2='2017-03-04 23:59:00'
rcpann_global_dist(iek,tstr1,tstr2)
```



Please contact jinxing.li.87@gmail.com for support.


## License

MIT

**Free Software, Hell Yeah!**



            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "rcpann",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "python,Ring Current,Space,Space physics,Radiation belt,magnetosphere",
    "author": "Jinxing Li",
    "author_email": "<jinxing.li.87@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/68/88/bfd4aa114c84c480ebd110376a77e89e0880ca4640c8b631c6417655cdef/rcpann-0.0.7.tar.gz",
    "platform": null,
    "description": "\n# RCPANN - Ring Current Proton ANN Model\n\n[![N|Solid](https://cldup.com/dTxpPi9lDf.thumb.png)](https://nodesource.com/products/nsolid)\n\nThe Ring Current Proton Artificial Neural Network (RCPANN) model specifies the ring current proton distribution using artificial neural network (multi-layer perceptron).\n\nThis model is based on RBSP/RBSPICE measurements from 2013-2018. The RBSPICE measures proton flux at 14 energy channels from 45 keV to 598 keV, and this model provides proton spin-averaged flux in those 14 energy channels. The data for the training and modeling are available at https://doi.org/10.5281/zenodo.7651736. The training program are available ar https://github.com/jinxingli87/RCPANN.\n\n## How to use the RCPANN model\nFirst, pip install the 'rcpann' package. Tensorflow and Pytorch packages are required. \n```sh\npip3 install rcpann\n```\n\n## \u2728 Example 1: Predict proton flux at a specific moment\nInput: iek, coord in shape of either (4,) or (1,4), and tstr in form of 'yyyy-mm-dd hh:mm:ss'\nThe iek should be a number between 0 and 13, and the corresponding energy is listed below.\n|iek|0|1|2|3|4|5|6|7|8|9|10|11|12|13|\n| ------ | ------ |------ | ------ |------ | ------ |------ | ------ |------ | ------ |------ | ------ |------ | ------ |------ |\n|Energy (keV)|45|55|67|82|99|121|148|181|220|269|328|400|489|598|\n```python3\nfrom rcpann import *\niek=1\ncoord=np.array([3.5, 0.0, 1.0, 0.0]) # L=3.5, cos(theta)=0, sin(theta)=1.0, Lat=0.0, which means MLT = 6h\nprint(pflux(iek,coord,tstr = '2017-03-01 22:42:00'))\n```\n\n## \u2728 Example 2. Model the global distribution of proton flux\n```python3\nfrom rcpann import *\niek=1\ntstr1='2017-03-01 22:42:00'\ntstr2='2017-03-04 23:59:00'\nrcpann_global_dist(iek,tstr1,tstr2)\n```\n\n\n\nPlease contact jinxing.li.87@gmail.com for support.\n\n\n## License\n\nMIT\n\n**Free Software, Hell Yeah!**\n\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Ring Current Proton Artifician Neural Network Model",
    "version": "0.0.7",
    "project_urls": null,
    "split_keywords": [
        "python",
        "ring current",
        "space",
        "space physics",
        "radiation belt",
        "magnetosphere"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d85e457c1a759dbe8964e40312b0c6c07f9eca6933ed80ca6ed3e1e703d4cc90",
                "md5": "2531aaeb896ef6ebc9f2c3e90310d452",
                "sha256": "668b019848e7530e5d34126594b9aafd770f3f81d888e6e9beca36880ee74bae"
            },
            "downloads": -1,
            "filename": "rcpann-0.0.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2531aaeb896ef6ebc9f2c3e90310d452",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 17785695,
            "upload_time": "2023-12-27T20:51:11",
            "upload_time_iso_8601": "2023-12-27T20:51:11.871367Z",
            "url": "https://files.pythonhosted.org/packages/d8/5e/457c1a759dbe8964e40312b0c6c07f9eca6933ed80ca6ed3e1e703d4cc90/rcpann-0.0.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6888bfd4aa114c84c480ebd110376a77e89e0880ca4640c8b631c6417655cdef",
                "md5": "5bbe33747ba6af2ee47460e044eaf763",
                "sha256": "07577c616244655b4fc71c27db4e505adc87d1935b262f78bff2dbeb94d1b371"
            },
            "downloads": -1,
            "filename": "rcpann-0.0.7.tar.gz",
            "has_sig": false,
            "md5_digest": "5bbe33747ba6af2ee47460e044eaf763",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 17407040,
            "upload_time": "2023-12-27T20:51:27",
            "upload_time_iso_8601": "2023-12-27T20:51:27.564128Z",
            "url": "https://files.pythonhosted.org/packages/68/88/bfd4aa114c84c480ebd110376a77e89e0880ca4640c8b631c6417655cdef/rcpann-0.0.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-27 20:51:27",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "rcpann"
}
        
Elapsed time: 0.29628s