Name | reddemcee JSON |
Version |
0.6.3
JSON |
| download |
home_page | None |
Summary | An Adaptative Parallel Tempering wrapper for emcee 3 for personal use |
upload_time | 2024-05-24 19:23:11 |
maintainer | None |
docs_url | None |
author | ReddTea |
requires_python | >=3.6 |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Reddemcee
An Adaptative Parallel Tempering wrapper for emcee 3 for personal use, which
someone in the community might find useful on it's own.
# Overview
Reddemcee is simply a wrapper for the excellent MCMC implementation [emcee](https://arxiv.org/abs/1202.3665),
that contains an adaptative parallel tempering version of the sampler, according to [Vousden et al. implementation](https://arxiv.org/abs/1501.05823).
It's coded in such a way that minimal differences in input are required, and it's
fully compatible with emcee (v. 3.1.3).
# Dependencies
This code makes use of:
- Numpy
- pandas
- tqdm (https://pypi.python.org/pypi/tqdm)
- emcee (https://github.com/dfm/emcee)
Most of them come with conda, if some are missing they can be easily installed with pip.
# Installation
In the console type in your work folder
```sh
pip install reddemcee
```
# Usage
Please refer to the test file in the tests folder.
```python
import numpy as np
import reddemcee
def log_like(x, ivar):
return -0.5 * np.sum(ivar * x ** 2)
def log_prior(x):
return 0.0
ndim, nwalkers = 5, 100
ntemps = 5
ivar = 1. / np.random.rand(ndim)
p0 = list(np.random.randn(10, nwalkers, ndim))
sampler = reddemcee.PTSampler(nwalkers,
ndim,
log_like,
log_prior,
ntemps=ntemps,
adaptative=True,
logl_args=[ivar],
)
sampler.run_mcmc(p0, 100, 2) # starting pos, nsweeps, nsteps
```
# Additional Options
ntemps
betas
pool
adaptative
config_adaptation_halflife rn: adaptations reduced by half at this time
config_adaptation_rate rn: smaller, faster
moves
backend
## Stored
ratios
betas_history
betas_history_bool
ratios_history
## Funcs
thermodynamic_integration(self,
coef=3,
sampler_dict = {'flat':False,
'discard':10})
get_Z(discard=1, coef=3, largo=100)
get_attr(x)
get_func(x)
Raw data
{
"_id": null,
"home_page": null,
"name": "reddemcee",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": null,
"author": "ReddTea",
"author_email": "redd@tea.com",
"download_url": "https://files.pythonhosted.org/packages/b1/07/5d61177824c781ea43a324f888abb28a0336920feb0e07e847c43097a807/reddemcee-0.6.3.tar.gz",
"platform": null,
"description": "# Reddemcee\n\nAn Adaptative Parallel Tempering wrapper for emcee 3 for personal use, which\nsomeone in the community might find useful on it's own.\n\n# Overview\nReddemcee is simply a wrapper for the excellent MCMC implementation [emcee](https://arxiv.org/abs/1202.3665),\nthat contains an adaptative parallel tempering version of the sampler, according to [Vousden et al. implementation](https://arxiv.org/abs/1501.05823).\nIt's coded in such a way that minimal differences in input are required, and it's\nfully compatible with emcee (v. 3.1.3).\n\n# Dependencies\n\nThis code makes use of:\n - Numpy\n - pandas\n - tqdm (https://pypi.python.org/pypi/tqdm)\n - emcee (https://github.com/dfm/emcee)\n\nMost of them come with conda, if some are missing they can be easily installed with pip.\n\n# Installation\n\nIn the console type in your work folder\n```sh\npip install reddemcee\n```\n\n# Usage\n\nPlease refer to the test file in the tests folder.\n\n```python\nimport numpy as np\nimport reddemcee\n\ndef log_like(x, ivar):\n return -0.5 * np.sum(ivar * x ** 2)\n\ndef log_prior(x):\n return 0.0\n\nndim, nwalkers = 5, 100\nntemps = 5\nivar = 1. / np.random.rand(ndim)\np0 = list(np.random.randn(10, nwalkers, ndim))\nsampler = reddemcee.PTSampler(nwalkers,\n ndim,\n log_like,\n log_prior,\n ntemps=ntemps,\n adaptative=True,\n logl_args=[ivar],\n )\n \nsampler.run_mcmc(p0, 100, 2) # starting pos, nsweeps, nsteps\n```\n\n# Additional Options\n\nntemps\nbetas\npool\nadaptative\nconfig_adaptation_halflife rn: adaptations reduced by half at this time\nconfig_adaptation_rate rn: smaller, faster\nmoves\nbackend\n\n## Stored\nratios\nbetas_history\nbetas_history_bool\nratios_history\n\n## Funcs\nthermodynamic_integration(self,\n coef=3,\n sampler_dict = {'flat':False,\n 'discard':10})\n\nget_Z(discard=1, coef=3, largo=100)\nget_attr(x)\nget_func(x)\n",
"bugtrack_url": null,
"license": null,
"summary": "An Adaptative Parallel Tempering wrapper for emcee 3 for personal use",
"version": "0.6.3",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "45acbbd4311d3fe57e325ca77e737a34b1689f3e48ed6c1222146fbce76c0989",
"md5": "38ebe821f7b31a32c813f06c9bd1765c",
"sha256": "c0114ccdb48e67f7c6bc560b3cccd55991609f3eaa0c304ee3da9746de370f35"
},
"downloads": -1,
"filename": "reddemcee-0.6.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "38ebe821f7b31a32c813f06c9bd1765c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 7884,
"upload_time": "2024-05-24T19:23:09",
"upload_time_iso_8601": "2024-05-24T19:23:09.346369Z",
"url": "https://files.pythonhosted.org/packages/45/ac/bbd4311d3fe57e325ca77e737a34b1689f3e48ed6c1222146fbce76c0989/reddemcee-0.6.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b1075d61177824c781ea43a324f888abb28a0336920feb0e07e847c43097a807",
"md5": "12eeec0596d8965af26f8cf661189e6b",
"sha256": "068155d5a0b2a70e6f7fbedccc4d80821d708b9e2eb4fc0c8a3822935c037f0d"
},
"downloads": -1,
"filename": "reddemcee-0.6.3.tar.gz",
"has_sig": false,
"md5_digest": "12eeec0596d8965af26f8cf661189e6b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 8727,
"upload_time": "2024-05-24T19:23:11",
"upload_time_iso_8601": "2024-05-24T19:23:11.176642Z",
"url": "https://files.pythonhosted.org/packages/b1/07/5d61177824c781ea43a324f888abb28a0336920feb0e07e847c43097a807/reddemcee-0.6.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-05-24 19:23:11",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "reddemcee"
}