redistributor


Nameredistributor JSON
Version 1.0.0 PyPI version JSON
download
home_pageNone
SummaryA tool for automatic transformation of empirical data distributions
upload_time2024-07-05 23:37:48
maintainerNone
docs_urlNone
authorPavol Harar
requires_python>3.6
licenseMIT
keywords distribution transformation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
<img src="https://gitlab.com/paloha/redistributor/uploads/e1bbea08834112646af45e6917324379/avatar.png" alt="match_colors" width="20%">

# Redistributor

**Redistributor** is a Python package which forces a collection of scalar samples to follow a desired distribution. When given independent and identically distributed samples of some random variable $S$ and the continuous cumulative distribution function of some desired target $T$, it provably produces a consistent estimator of the transformation $R$ which satisfies $R(S)=T$ in distribution. As the distribution of $S$ or $T$ may be unknown, we also include algorithms for efficiently estimating these distributions from samples. This allows for various interesting use cases in image processing, where Redistributor serves as a remarkably simple and easy-to-use tool that is capable of producing visually appealing results. The package is implemented in Python and is optimized to efficiently handle large data sets, making it also suitable as a preprocessing step in machine learning.
<br>

<img src="https://gitlab.com/paloha/redistributor/uploads/ce5305668697d3bdf6035c839aceb2c2/match_colors.jpg" alt="Example of matching colors" width="100%">
<small><i><center>Matching colors of a reference image – one of the use cases of Redistributor</center></i></small>

## Installation

```bash
pip install redistributor
```

## Quick-start

```python
from redistributor import Redistributor as R
from redistributor import LearnedDistribution as L
from scipy.stats import dgamma, norm

S = dgamma(7).rvs(size=1000)  # Samples from source distribution
target = norm(0, 1)  # In this example, target is set explicitly
r = R(source=L(S), target=target)  # Estimate the transformation
output = r.transform(S)  # Data now follows the target distribution
```
More in `examples.ipynb`. Examples for image processing are in `examples-images.ipynb`.

## Documentation
Documentation is available in `docs` folder.


## News & Changelog

* :hammer: Package is still under development
* 2024.07 - [Preprint](https://arxiv.org/abs/2210.14219) on ArXiv updated with new results
* 2024.07 - Package released on PyPi.org :tada:
* 2024.07 - Repository mirrored to GitHub for easier access of the community
* 2023.10 - Added code examples of image processing
* 2022.10 - [Preprint](https://arxiv.org/abs/2210.14219) published on ArXiv :tada:
* 2022.09 - Redistributor v1.0 (complete rewrite)
* 2021.10 - Redistributor v0.2 (generalization to arbitrary source & target)
* 2018.08 - Introducing Redistributor (generalization to arbitrary target)
* 2018.07 - Introducing Gaussifier package (now deprecated)

## How to cite

If you use Redistributor in your research, please cite the following paper:
```
@article{harar2022redistributor,
  title={Redistributor: Transforming Empirical Data Distributions},
  author={Harar, P. and Elbrächter, D. and Dörfler, M. and Johnson, K.},
  eprinttype={ArXiv},
  eprint={2210.14219}
}
```

## License
This project is licensed under the terms of the MIT license.
See `license.txt` for details.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "redistributor",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">3.6",
    "maintainer_email": null,
    "keywords": "distribution transformation",
    "author": "Pavol Harar",
    "author_email": "pavol.harar@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/6e/29/5f9a46aa719c340a131b051e7ec9f0e7174162df1f644aeb0869aa5bdacc/redistributor-1.0.0.tar.gz",
    "platform": "any",
    "description": "\n<img src=\"https://gitlab.com/paloha/redistributor/uploads/e1bbea08834112646af45e6917324379/avatar.png\" alt=\"match_colors\" width=\"20%\">\n\n# Redistributor\n\n**Redistributor** is a Python package which forces a collection of scalar samples to follow a desired distribution. When given independent and identically distributed samples of some random variable $S$ and the continuous cumulative distribution function of some desired target $T$, it provably produces a consistent estimator of the transformation $R$ which satisfies $R(S)=T$ in distribution. As the distribution of $S$ or $T$ may be unknown, we also include algorithms for efficiently estimating these distributions from samples. This allows for various interesting use cases in image processing, where Redistributor serves as a remarkably simple and easy-to-use tool that is capable of producing visually appealing results. The package is implemented in Python and is optimized to efficiently handle large data sets, making it also suitable as a preprocessing step in machine learning.\n<br>\n\n<img src=\"https://gitlab.com/paloha/redistributor/uploads/ce5305668697d3bdf6035c839aceb2c2/match_colors.jpg\" alt=\"Example of matching colors\" width=\"100%\">\n<small><i><center>Matching colors of a reference image \u2013 one of the use cases of Redistributor</center></i></small>\n\n## Installation\n\n```bash\npip install redistributor\n```\n\n## Quick-start\n\n```python\nfrom redistributor import Redistributor as R\nfrom redistributor import LearnedDistribution as L\nfrom scipy.stats import dgamma, norm\n\nS = dgamma(7).rvs(size=1000)  # Samples from source distribution\ntarget = norm(0, 1)  # In this example, target is set explicitly\nr = R(source=L(S), target=target)  # Estimate the transformation\noutput = r.transform(S)  # Data now follows the target distribution\n```\nMore in `examples.ipynb`. Examples for image processing are in `examples-images.ipynb`.\n\n## Documentation\nDocumentation is available in `docs` folder.\n\n\n## News & Changelog\n\n* :hammer: Package is still under development\n* 2024.07 - [Preprint](https://arxiv.org/abs/2210.14219) on ArXiv updated with new results\n* 2024.07 - Package released on PyPi.org :tada:\n* 2024.07 - Repository mirrored to GitHub for easier access of the community\n* 2023.10 - Added code examples of image processing\n* 2022.10 - [Preprint](https://arxiv.org/abs/2210.14219) published on ArXiv :tada:\n* 2022.09 - Redistributor v1.0 (complete rewrite)\n* 2021.10 - Redistributor v0.2 (generalization to arbitrary source & target)\n* 2018.08 - Introducing Redistributor (generalization to arbitrary target)\n* 2018.07 - Introducing Gaussifier package (now deprecated)\n\n## How to cite\n\nIf you use Redistributor in your research, please cite the following paper:\n```\n@article{harar2022redistributor,\n  title={Redistributor: Transforming Empirical Data Distributions},\n  author={Harar, P. and Elbr\u00e4chter, D. and D\u00f6rfler, M. and Johnson, K.},\n  eprinttype={ArXiv},\n  eprint={2210.14219}\n}\n```\n\n## License\nThis project is licensed under the terms of the MIT license.\nSee `license.txt` for details.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A tool for automatic transformation of empirical data distributions",
    "version": "1.0.0",
    "project_urls": {
        "Documentation": "https://github.com/paloha/redistributor/raw/master/docs/redistributor.pdf",
        "Issue tracker": "https://github.com/paloha/redistributor/issues",
        "Publication": "https://arxiv.org/abs/2210.14219",
        "Source": "https://github.com/paloha/redistributor"
    },
    "split_keywords": [
        "distribution",
        "transformation"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "46ff266a5d96f6b19fbbdad24751dab0047dfb785d753e3e6632f4382bb1d65e",
                "md5": "de390284a1e251e0cd8bf75576bf3b18",
                "sha256": "6a7fa82e018024c77148bc13b496c712c8434b133db4201eeaf03061568d130b"
            },
            "downloads": -1,
            "filename": "redistributor-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "de390284a1e251e0cd8bf75576bf3b18",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">3.6",
            "size": 13871,
            "upload_time": "2024-07-05T23:37:46",
            "upload_time_iso_8601": "2024-07-05T23:37:46.870467Z",
            "url": "https://files.pythonhosted.org/packages/46/ff/266a5d96f6b19fbbdad24751dab0047dfb785d753e3e6632f4382bb1d65e/redistributor-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6e295f9a46aa719c340a131b051e7ec9f0e7174162df1f644aeb0869aa5bdacc",
                "md5": "455d8e26d6fa6f3bcfdbf98ed2969cd4",
                "sha256": "5b9422b0756744f99a4c00cc645b31b31fc621ef1b476be737b2d90e6f09075e"
            },
            "downloads": -1,
            "filename": "redistributor-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "455d8e26d6fa6f3bcfdbf98ed2969cd4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">3.6",
            "size": 14136,
            "upload_time": "2024-07-05T23:37:48",
            "upload_time_iso_8601": "2024-07-05T23:37:48.392994Z",
            "url": "https://files.pythonhosted.org/packages/6e/29/5f9a46aa719c340a131b051e7ec9f0e7174162df1f644aeb0869aa5bdacc/redistributor-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-05 23:37:48",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "paloha",
    "github_project": "redistributor",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "redistributor"
}
        
Elapsed time: 0.26292s