[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)
# Reka Torch
Implementation of the model: "Reka Core, Flash, and Edge: A Series of Powerful Multimodal Language Models" in PyTorch. [PAPER LINK](https://publications.reka.ai/reka-core-tech-report.pdf)
## Install
`pip3 install -U reka-torch`
## Usage
```python
import torch # Importing the torch library
from reka_torch.model import Reka # Importing the Reka model from the reka_torch package
text = torch.randint(0, 10000, (2, 512)) # Generating a random tensor of shape (2, 512) with values between 0 and 10000
img = torch.randn(2, 3, 224, 224) # Generating a random tensor of shape (2, 3, 224, 224) with values from a normal distribution
audio = torch.randn(2, 1000) # Generating a random tensor of shape (2, 1000) with values from a normal distribution
video = torch.randn(2, 3, 16, 224, 224) # Generating a random tensor of shape (2, 3, 16, 224, 224) with values from a normal distribution
model = Reka(512) # Creating an instance of the Reka model with input size 512
out = model(text, img, audio, video) # Forward pass through the model with the input tensors
print(out.shape) # Printing the shape of the output tensor
```
# License
MIT
Raw data
{
"_id": null,
"home_page": "https://github.com/kyegomez/Reka-Torch",
"name": "reka-torch",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.10",
"maintainer_email": null,
"keywords": "artificial intelligence, deep learning, optimizers, Prompt Engineering",
"author": "Kye Gomez",
"author_email": "kye@apac.ai",
"download_url": "https://files.pythonhosted.org/packages/81/64/9ecfb0873e92e68a55cad4f93f1a5def7d382cd07bd2de69e4fb67d24175/reka_torch-0.0.2.tar.gz",
"platform": null,
"description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# Reka Torch\nImplementation of the model: \"Reka Core, Flash, and Edge: A Series of Powerful Multimodal Language Models\" in PyTorch. [PAPER LINK](https://publications.reka.ai/reka-core-tech-report.pdf)\n\n## Install\n`pip3 install -U reka-torch`\n\n## Usage\n```python\nimport torch # Importing the torch library\nfrom reka_torch.model import Reka # Importing the Reka model from the reka_torch package\n\ntext = torch.randint(0, 10000, (2, 512)) # Generating a random tensor of shape (2, 512) with values between 0 and 10000\n\nimg = torch.randn(2, 3, 224, 224) # Generating a random tensor of shape (2, 3, 224, 224) with values from a normal distribution\n\naudio = torch.randn(2, 1000) # Generating a random tensor of shape (2, 1000) with values from a normal distribution\n\nvideo = torch.randn(2, 3, 16, 224, 224) # Generating a random tensor of shape (2, 3, 16, 224, 224) with values from a normal distribution\n\nmodel = Reka(512) # Creating an instance of the Reka model with input size 512\n\nout = model(text, img, audio, video) # Forward pass through the model with the input tensors\n\nprint(out.shape) # Printing the shape of the output tensor\n\n```\n\n# License\nMIT\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Reka Torch - Pytorch",
"version": "0.0.2",
"project_urls": {
"Documentation": "https://github.com/kyegomez/Reka-Torch",
"Homepage": "https://github.com/kyegomez/Reka-Torch",
"Repository": "https://github.com/kyegomez/Reka-Torch"
},
"split_keywords": [
"artificial intelligence",
" deep learning",
" optimizers",
" prompt engineering"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "97e1fbc2e0c9c7a687d86599574f56e7f8e8b5f8bf32b5f9490710736d4b229d",
"md5": "d4bf16645542cc8077119af995eae257",
"sha256": "e05b598de41dbaa2aed22111ae64acf9f28035b2d1a82836f5c643f6f9dcb5f7"
},
"downloads": -1,
"filename": "reka_torch-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d4bf16645542cc8077119af995eae257",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.10",
"size": 4406,
"upload_time": "2024-04-16T01:07:44",
"upload_time_iso_8601": "2024-04-16T01:07:44.549563Z",
"url": "https://files.pythonhosted.org/packages/97/e1/fbc2e0c9c7a687d86599574f56e7f8e8b5f8bf32b5f9490710736d4b229d/reka_torch-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "81649ecfb0873e92e68a55cad4f93f1a5def7d382cd07bd2de69e4fb67d24175",
"md5": "4415180fdc74d998f75dbb222654e46d",
"sha256": "f339fb039ace2e6b5d349b42f28851fe22ae9ac90b173990a3a57b5e5a80a325"
},
"downloads": -1,
"filename": "reka_torch-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "4415180fdc74d998f75dbb222654e46d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.10",
"size": 4468,
"upload_time": "2024-04-16T01:07:46",
"upload_time_iso_8601": "2024-04-16T01:07:46.415109Z",
"url": "https://files.pythonhosted.org/packages/81/64/9ecfb0873e92e68a55cad4f93f1a5def7d382cd07bd2de69e4fb67d24175/reka_torch-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-16 01:07:46",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kyegomez",
"github_project": "Reka-Torch",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "reka-torch"
}