reka-torch


Namereka-torch JSON
Version 0.0.2 PyPI version JSON
download
home_pagehttps://github.com/kyegomez/Reka-Torch
SummaryReka Torch - Pytorch
upload_time2024-04-16 01:07:46
maintainerNone
docs_urlNone
authorKye Gomez
requires_python<4.0,>=3.10
licenseMIT
keywords artificial intelligence deep learning optimizers prompt engineering
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)

# Reka Torch
Implementation of the model: "Reka Core, Flash, and Edge: A Series of Powerful Multimodal Language Models" in PyTorch. [PAPER LINK](https://publications.reka.ai/reka-core-tech-report.pdf)

## Install
`pip3 install -U reka-torch`

## Usage
```python
import torch  # Importing the torch library
from reka_torch.model import Reka  # Importing the Reka model from the reka_torch package

text = torch.randint(0, 10000, (2, 512))  # Generating a random tensor of shape (2, 512) with values between 0 and 10000

img = torch.randn(2, 3, 224, 224)  # Generating a random tensor of shape (2, 3, 224, 224) with values from a normal distribution

audio = torch.randn(2, 1000)  # Generating a random tensor of shape (2, 1000) with values from a normal distribution

video = torch.randn(2, 3, 16, 224, 224)  # Generating a random tensor of shape (2, 3, 16, 224, 224) with values from a normal distribution

model = Reka(512)  # Creating an instance of the Reka model with input size 512

out = model(text, img, audio, video)  # Forward pass through the model with the input tensors

print(out.shape)  # Printing the shape of the output tensor

```

# License
MIT

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kyegomez/Reka-Torch",
    "name": "reka-torch",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": "artificial intelligence, deep learning, optimizers, Prompt Engineering",
    "author": "Kye Gomez",
    "author_email": "kye@apac.ai",
    "download_url": "https://files.pythonhosted.org/packages/81/64/9ecfb0873e92e68a55cad4f93f1a5def7d382cd07bd2de69e4fb67d24175/reka_torch-0.0.2.tar.gz",
    "platform": null,
    "description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# Reka Torch\nImplementation of the model: \"Reka Core, Flash, and Edge: A Series of Powerful Multimodal Language Models\" in PyTorch. [PAPER LINK](https://publications.reka.ai/reka-core-tech-report.pdf)\n\n## Install\n`pip3 install -U reka-torch`\n\n## Usage\n```python\nimport torch  # Importing the torch library\nfrom reka_torch.model import Reka  # Importing the Reka model from the reka_torch package\n\ntext = torch.randint(0, 10000, (2, 512))  # Generating a random tensor of shape (2, 512) with values between 0 and 10000\n\nimg = torch.randn(2, 3, 224, 224)  # Generating a random tensor of shape (2, 3, 224, 224) with values from a normal distribution\n\naudio = torch.randn(2, 1000)  # Generating a random tensor of shape (2, 1000) with values from a normal distribution\n\nvideo = torch.randn(2, 3, 16, 224, 224)  # Generating a random tensor of shape (2, 3, 16, 224, 224) with values from a normal distribution\n\nmodel = Reka(512)  # Creating an instance of the Reka model with input size 512\n\nout = model(text, img, audio, video)  # Forward pass through the model with the input tensors\n\nprint(out.shape)  # Printing the shape of the output tensor\n\n```\n\n# License\nMIT\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Reka Torch - Pytorch",
    "version": "0.0.2",
    "project_urls": {
        "Documentation": "https://github.com/kyegomez/Reka-Torch",
        "Homepage": "https://github.com/kyegomez/Reka-Torch",
        "Repository": "https://github.com/kyegomez/Reka-Torch"
    },
    "split_keywords": [
        "artificial intelligence",
        " deep learning",
        " optimizers",
        " prompt engineering"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "97e1fbc2e0c9c7a687d86599574f56e7f8e8b5f8bf32b5f9490710736d4b229d",
                "md5": "d4bf16645542cc8077119af995eae257",
                "sha256": "e05b598de41dbaa2aed22111ae64acf9f28035b2d1a82836f5c643f6f9dcb5f7"
            },
            "downloads": -1,
            "filename": "reka_torch-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d4bf16645542cc8077119af995eae257",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 4406,
            "upload_time": "2024-04-16T01:07:44",
            "upload_time_iso_8601": "2024-04-16T01:07:44.549563Z",
            "url": "https://files.pythonhosted.org/packages/97/e1/fbc2e0c9c7a687d86599574f56e7f8e8b5f8bf32b5f9490710736d4b229d/reka_torch-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "81649ecfb0873e92e68a55cad4f93f1a5def7d382cd07bd2de69e4fb67d24175",
                "md5": "4415180fdc74d998f75dbb222654e46d",
                "sha256": "f339fb039ace2e6b5d349b42f28851fe22ae9ac90b173990a3a57b5e5a80a325"
            },
            "downloads": -1,
            "filename": "reka_torch-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "4415180fdc74d998f75dbb222654e46d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 4468,
            "upload_time": "2024-04-16T01:07:46",
            "upload_time_iso_8601": "2024-04-16T01:07:46.415109Z",
            "url": "https://files.pythonhosted.org/packages/81/64/9ecfb0873e92e68a55cad4f93f1a5def7d382cd07bd2de69e4fb67d24175/reka_torch-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-16 01:07:46",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kyegomez",
    "github_project": "Reka-Torch",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "reka-torch"
}
        
Elapsed time: 0.25811s