retinafacex


Nameretinafacex JSON
Version 0.1.2 PyPI version JSON
download
home_pagehttps://github.com/yakhyo/retinafacex
SummaryRetinaFaceX (X-extended): Lightweight Face Detection Library
upload_time2024-11-19 07:49:48
maintainerNone
docs_urlNone
authorYakhyokhuja Valikhujaev
requires_python>=3.8
licenseMIT
keywords retinaface face detection deep learning onnx opencv
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # RetinaFaceX (X-extended): Lightweight Face Detection Library

<div align="center">

[![License](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)
![Python](https://img.shields.io/badge/Python-3.8%2B-blue)
[![PyPI Version](https://img.shields.io/pypi/v/retinafacex.svg)](https://pypi.org/project/retinafacex/)
[![Build Status](https://github.com/yakhyo/retinafacex/actions/workflows/build.yml/badge.svg)](https://github.com/yakhyo/retinafacex/actions)
[![Downloads](https://pepy.tech/badge/retinafacex)](https://pepy.tech/project/retinafacex)
[![Code Style: PEP8](https://img.shields.io/badge/code%20style-PEP8-green.svg)](https://www.python.org/dev/peps/pep-0008/)

</div>

RetinaFaceX is a lightweight face detection library designed for high-performance face localization and landmark detection. The library supports ONNX models and provides utilities for bounding box visualization and landmark plotting. To train RetinaFace model, see https://github.com/yakhyo/retinaface-pytorch.

---

## Features

- High-speed face detection using ONNX models.
- Accurate facial landmark localization (e.g., eyes, nose, and mouth).
- Easy-to-use API for inference and visualization.
- Customizable confidence thresholds for bounding box filtering.

---

## Installation

### Using pip

```bash
pip install retinafacex
```

### Local installation using pip

**Clone the repository**

```bash
git clone https://github.com/yakhyo/retinafacex.git
cd retinafacex
```

**Install using pip**

```bash
pip install .
```

---

## Quick Start

### Initialize the Model

```python
from retinafacex import RetinaFace

# Initialize the RetinaFace model
retinaface_inference = RetinaFace(
    model="retinaface_mnet_v2",  # Model name
    conf_thresh=0.5,            # Confidence threshold
    pre_nms_topk=5000,          # Pre-NMS Top-K detections
    nms_thresh=0.4,             # NMS IoU threshold
    post_nms_topk=750           # Post-NMS Top-K detections
)
```

### Run Inference

```python
import cv2
from retinafacex.visualization import draw_detections

# Load an image
image_path = "assets/test.jpg"
original_image = cv2.imread(image_path)

# Perform inference
boxes, landmarks = retinaface_inference.detect(original_image)

# Visualize results
draw_detections(original_image, (boxes, landmarks), vis_threshold=0.6)

# Save the output image
output_path = "output.jpg"
cv2.imwrite(output_path, original_image)
print(f"Saved output image to {output_path}")
```

---

### Evaluation results of available models on WiderFace

| RetinaFace ONNX Backbones | Easy       | Medium     | Hard       |
| ------------------------- | ---------- | ---------- | ---------- |
| retinaface_mnetv1_025     | 88.48%     | 87.02%     | 80.61%     |
| retinaface_mnetv1_050     | 89.42%     | 87.97%     | 82.40%     |
| retinaface_mnetv1         | 90.59%     | 89.14%     | 84.13%     |
| retinaface_mnetv2         | 91.70%     | 91.03%     | 86.60%     |
| retinaface_r18            | 92.50%     | 91.02%     | 86.63%     |
| retinaface_r34            | **94.16%** | **93.12%** | **88.90%** |

## API Reference

### RetinaFace Class

#### Initialization

```python
RetinaFace(
    model: str,
    conf_thresh: float = 0.5,
    pre_nms_topk: int = 5000,
    nms_thresh: float = 0.4,
    post_nms_topk: int = 750
)
```

- `model`: Model name (e.g., retinaface_mnet_v2).
  - retinaface_mnet025
  - retinaface_mnet050
  - retinaface_mnet_v1
  - retinaface_mnet_v2
  - retinaface_r18
  - retinaface_r34
- `conf_thresh`: Minimum confidence threshold for detections.
- `pre_nms_topk`: Maximum number of detections to keep before NMS.
- `nms_thresh`: IoU threshold for Non-Maximum Suppression.
- `post_nms_topk`: Maximum number of detections to keep after NMS.

#### `detect(image: np.ndarray, max_num: Optional[int] = 0, metric: Literal["default", "max"] = "default", center_weight: Optional[float] = 2.0) -> Tuple[np.ndarray, np.ndarray]`

- **Description**: Performs face detection on the input image and returns bounding boxes and landmarks for detected faces.

- **Inputs**:

  - `image` (`np.ndarray`): The input image as a NumPy array in BGR format.
  - `max_num` (`Optional[int]`, default=`0`): The maximum number of faces to return. If `0`, all detected faces are returned.
  - `metric` (`Literal["default", "max"]`, default=`"default"`): The metric for prioritizing detections:
    - `"default"`: Prioritize detections closer to the image center.
    - `"max"`: Prioritize detections with larger bounding box areas.
  - `center_weight` (`Optional[float]`, default=`2.0`): A weight factor for prioritizing faces closer to the center of the image.

- **Outputs**:
  - `Tuple[np.ndarray, np.ndarray]`: A tuple containing:
    - `bounding_boxes` (`np.ndarray`): An array of bounding boxes, each represented as `[x_min, y_min, x_max, y_max, confidence]`.
    - `landmarks` (`np.ndarray`): An array of facial landmarks, each represented as `[(x1, y1), ..., (x5, y5)]`.

---

## Visualization Utilities

### `draw_detections(original_image, detections, vis_threshold)`

- Draws bounding boxes and landmarks on the image.
- Filters detections below the confidence threshold.

---

## Contributing

We welcome contributions to enhance the library! Feel free to:

- Submit bug reports or feature requests.
- Fork the repository and create a pull request.

---

## License

This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.

---

## Acknowledgments

- Based on the RetinaFace model for face detection ([https://github.com/yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch)).
- Inspired by InsightFace and other face detection projects.

---

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/yakhyo/retinafacex",
    "name": "retinafacex",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "retinaface, face detection, deep learning, onnx, opencv",
    "author": "Yakhyokhuja Valikhujaev",
    "author_email": "yakhyo9696@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/70/c7/69c78376dd0e38c389714e2d5e877d1bc530b1fafc8ef02ea1f90574f29d/retinafacex-0.1.2.tar.gz",
    "platform": null,
    "description": "# RetinaFaceX (X-extended): Lightweight Face Detection Library\n\n<div align=\"center\">\n\n[![License](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)\n![Python](https://img.shields.io/badge/Python-3.8%2B-blue)\n[![PyPI Version](https://img.shields.io/pypi/v/retinafacex.svg)](https://pypi.org/project/retinafacex/)\n[![Build Status](https://github.com/yakhyo/retinafacex/actions/workflows/build.yml/badge.svg)](https://github.com/yakhyo/retinafacex/actions)\n[![Downloads](https://pepy.tech/badge/retinafacex)](https://pepy.tech/project/retinafacex)\n[![Code Style: PEP8](https://img.shields.io/badge/code%20style-PEP8-green.svg)](https://www.python.org/dev/peps/pep-0008/)\n\n</div>\n\nRetinaFaceX is a lightweight face detection library designed for high-performance face localization and landmark detection. The library supports ONNX models and provides utilities for bounding box visualization and landmark plotting. To train RetinaFace model, see https://github.com/yakhyo/retinaface-pytorch.\n\n---\n\n## Features\n\n- High-speed face detection using ONNX models.\n- Accurate facial landmark localization (e.g., eyes, nose, and mouth).\n- Easy-to-use API for inference and visualization.\n- Customizable confidence thresholds for bounding box filtering.\n\n---\n\n## Installation\n\n### Using pip\n\n```bash\npip install retinafacex\n```\n\n### Local installation using pip\n\n**Clone the repository**\n\n```bash\ngit clone https://github.com/yakhyo/retinafacex.git\ncd retinafacex\n```\n\n**Install using pip**\n\n```bash\npip install .\n```\n\n---\n\n## Quick Start\n\n### Initialize the Model\n\n```python\nfrom retinafacex import RetinaFace\n\n# Initialize the RetinaFace model\nretinaface_inference = RetinaFace(\n    model=\"retinaface_mnet_v2\",  # Model name\n    conf_thresh=0.5,            # Confidence threshold\n    pre_nms_topk=5000,          # Pre-NMS Top-K detections\n    nms_thresh=0.4,             # NMS IoU threshold\n    post_nms_topk=750           # Post-NMS Top-K detections\n)\n```\n\n### Run Inference\n\n```python\nimport cv2\nfrom retinafacex.visualization import draw_detections\n\n# Load an image\nimage_path = \"assets/test.jpg\"\noriginal_image = cv2.imread(image_path)\n\n# Perform inference\nboxes, landmarks = retinaface_inference.detect(original_image)\n\n# Visualize results\ndraw_detections(original_image, (boxes, landmarks), vis_threshold=0.6)\n\n# Save the output image\noutput_path = \"output.jpg\"\ncv2.imwrite(output_path, original_image)\nprint(f\"Saved output image to {output_path}\")\n```\n\n---\n\n### Evaluation results of available models on WiderFace\n\n| RetinaFace ONNX Backbones | Easy       | Medium     | Hard       |\n| ------------------------- | ---------- | ---------- | ---------- |\n| retinaface_mnetv1_025     | 88.48%     | 87.02%     | 80.61%     |\n| retinaface_mnetv1_050     | 89.42%     | 87.97%     | 82.40%     |\n| retinaface_mnetv1         | 90.59%     | 89.14%     | 84.13%     |\n| retinaface_mnetv2         | 91.70%     | 91.03%     | 86.60%     |\n| retinaface_r18            | 92.50%     | 91.02%     | 86.63%     |\n| retinaface_r34            | **94.16%** | **93.12%** | **88.90%** |\n\n## API Reference\n\n### RetinaFace Class\n\n#### Initialization\n\n```python\nRetinaFace(\n    model: str,\n    conf_thresh: float = 0.5,\n    pre_nms_topk: int = 5000,\n    nms_thresh: float = 0.4,\n    post_nms_topk: int = 750\n)\n```\n\n- `model`: Model name (e.g., retinaface_mnet_v2).\n  - retinaface_mnet025\n  - retinaface_mnet050\n  - retinaface_mnet_v1\n  - retinaface_mnet_v2\n  - retinaface_r18\n  - retinaface_r34\n- `conf_thresh`: Minimum confidence threshold for detections.\n- `pre_nms_topk`: Maximum number of detections to keep before NMS.\n- `nms_thresh`: IoU threshold for Non-Maximum Suppression.\n- `post_nms_topk`: Maximum number of detections to keep after NMS.\n\n#### `detect(image: np.ndarray, max_num: Optional[int] = 0, metric: Literal[\"default\", \"max\"] = \"default\", center_weight: Optional[float] = 2.0) -> Tuple[np.ndarray, np.ndarray]`\n\n- **Description**: Performs face detection on the input image and returns bounding boxes and landmarks for detected faces.\n\n- **Inputs**:\n\n  - `image` (`np.ndarray`): The input image as a NumPy array in BGR format.\n  - `max_num` (`Optional[int]`, default=`0`): The maximum number of faces to return. If `0`, all detected faces are returned.\n  - `metric` (`Literal[\"default\", \"max\"]`, default=`\"default\"`): The metric for prioritizing detections:\n    - `\"default\"`: Prioritize detections closer to the image center.\n    - `\"max\"`: Prioritize detections with larger bounding box areas.\n  - `center_weight` (`Optional[float]`, default=`2.0`): A weight factor for prioritizing faces closer to the center of the image.\n\n- **Outputs**:\n  - `Tuple[np.ndarray, np.ndarray]`: A tuple containing:\n    - `bounding_boxes` (`np.ndarray`): An array of bounding boxes, each represented as `[x_min, y_min, x_max, y_max, confidence]`.\n    - `landmarks` (`np.ndarray`): An array of facial landmarks, each represented as `[(x1, y1), ..., (x5, y5)]`.\n\n---\n\n## Visualization Utilities\n\n### `draw_detections(original_image, detections, vis_threshold)`\n\n- Draws bounding boxes and landmarks on the image.\n- Filters detections below the confidence threshold.\n\n---\n\n## Contributing\n\nWe welcome contributions to enhance the library! Feel free to:\n\n- Submit bug reports or feature requests.\n- Fork the repository and create a pull request.\n\n---\n\n## License\n\nThis project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.\n\n---\n\n## Acknowledgments\n\n- Based on the RetinaFace model for face detection ([https://github.com/yakhyo/retinaface-pytorch](https://github.com/yakhyo/retinaface-pytorch)).\n- Inspired by InsightFace and other face detection projects.\n\n---\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "RetinaFaceX (X-extended): Lightweight Face Detection Library",
    "version": "0.1.2",
    "project_urls": {
        "Homepage": "https://github.com/yakhyo/retinafacex"
    },
    "split_keywords": [
        "retinaface",
        " face detection",
        " deep learning",
        " onnx",
        " opencv"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a43870d084d49314e39f7d59fdf19a7065eb6b8fef27c5e2c372e26bbd525629",
                "md5": "e2777b12760f550e85fa5937545c58d4",
                "sha256": "876d3d0dcc76434b26ef16d70f5d70e75c975a017e17eae4026cf6c8e99fa728"
            },
            "downloads": -1,
            "filename": "retinafacex-0.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e2777b12760f550e85fa5937545c58d4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 14291,
            "upload_time": "2024-11-19T07:49:47",
            "upload_time_iso_8601": "2024-11-19T07:49:47.451119Z",
            "url": "https://files.pythonhosted.org/packages/a4/38/70d084d49314e39f7d59fdf19a7065eb6b8fef27c5e2c372e26bbd525629/retinafacex-0.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "70c769c78376dd0e38c389714e2d5e877d1bc530b1fafc8ef02ea1f90574f29d",
                "md5": "0a0683350aa8fe1891b6d5984981e2c0",
                "sha256": "9486a6c69c3e31b66417975c954d6b471864f19044ec05ff1b63aee41026d072"
            },
            "downloads": -1,
            "filename": "retinafacex-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "0a0683350aa8fe1891b6d5984981e2c0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 14707,
            "upload_time": "2024-11-19T07:49:48",
            "upload_time_iso_8601": "2024-11-19T07:49:48.961201Z",
            "url": "https://files.pythonhosted.org/packages/70/c7/69c78376dd0e38c389714e2d5e877d1bc530b1fafc8ef02ea1f90574f29d/retinafacex-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-19 07:49:48",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "yakhyo",
    "github_project": "retinafacex",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "retinafacex"
}
        
Elapsed time: 1.67084s