retvec


Nameretvec JSON
Version 1.0.0 PyPI version JSON
download
home_pagehttps://github.com/google-research/retvec
SummaryResilient and Efficient Text Vectorizer
upload_time2023-08-02 21:38:21
maintainer
docs_urlNone
authorGoogle
requires_python
licenseApache License 2.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # RETVec: Resilient & Efficient Text Vectorizer


## Overview
RETVec is a next-gen text vectorizer designed to offer built-in adversarial resilience using robust word embeddings. Read the paper here: https://arxiv.org/abs/2302.09207.

RETVec is trained to be resilient against character manipulations including insertion, deletion, typos, homoglyphs, LEET substitution, and more. The RETVec model is trained on top of a novel character embedding which can encode all UTF-8 characters and words. Thus, RETVec works out-of-the-box on over 100 languages without the need for a lookup table or fixed vocabulary size. Furthermore, RETVec is a layer, which means that it can be inserted into any TF model without the need for a separate pre-processing step.


### Getting started

#### Installation

You can use pip to install the TensorFlow version of RETVec:

```python
pip install retvec
```

RETVec has been tested on TensorFlow 2.6+ and python 3.7+.

### Basic Usage

`training/train_tf_retvec_models.py` is the RETVec model training script. Example usage:

```python
train_tf_retvec_models.py --train_config <train_config_path> --model_config <model_config_path> --output_dir <output_path>
```

Configurations for our base models are under the `configs/` folder.

### Colab

Colab for training and releasing a new RETVec model: `notebooks/train_and_relase_a_rewnet.ipynb`

Hello world colab: `notebooks/hello_world.ipynb`

## Disclaimer
This is not an official Google product.



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/google-research/retvec",
    "name": "retvec",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Google",
    "author_email": "retvec@google.com",
    "download_url": "https://files.pythonhosted.org/packages/f3/e7/ab797f2b5e71f62690f1d2e3e848bacdc0d9dff48bda5ce9051253720237/retvec-1.0.0.tar.gz",
    "platform": null,
    "description": "# RETVec: Resilient & Efficient Text Vectorizer\n\n\n## Overview\nRETVec is a next-gen text vectorizer designed to offer built-in adversarial resilience using robust word embeddings. Read the paper here: https://arxiv.org/abs/2302.09207.\n\nRETVec is trained to be resilient against character manipulations including insertion, deletion, typos, homoglyphs, LEET substitution, and more. The RETVec model is trained on top of a novel character embedding which can encode all UTF-8 characters and words. Thus, RETVec works out-of-the-box on over 100 languages without the need for a lookup table or fixed vocabulary size. Furthermore, RETVec is a layer, which means that it can be inserted into any TF model without the need for a separate pre-processing step.\n\n\n### Getting started\n\n#### Installation\n\nYou can use pip to install the TensorFlow version of RETVec:\n\n```python\npip install retvec\n```\n\nRETVec has been tested on TensorFlow 2.6+ and python 3.7+.\n\n### Basic Usage\n\n`training/train_tf_retvec_models.py` is the RETVec model training script. Example usage:\n\n```python\ntrain_tf_retvec_models.py --train_config <train_config_path> --model_config <model_config_path> --output_dir <output_path>\n```\n\nConfigurations for our base models are under the `configs/` folder.\n\n### Colab\n\nColab for training and releasing a new RETVec model: `notebooks/train_and_relase_a_rewnet.ipynb`\n\nHello world colab: `notebooks/hello_world.ipynb`\n\n## Disclaimer\nThis is not an official Google product.\n\n\n",
    "bugtrack_url": null,
    "license": "Apache License 2.0",
    "summary": "Resilient and Efficient Text Vectorizer",
    "version": "1.0.0",
    "project_urls": {
        "Homepage": "https://github.com/google-research/retvec"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fe8fdb725817dddaa443721d116429bf9f024f40c061fb3ce36800ecbe3ad10d",
                "md5": "d401124c5159266adc55205b6bd2b733",
                "sha256": "84aeab0498a9a83b47eed40f7539e4e4900e3a08bf47f099e91116cd39539ed5"
            },
            "downloads": -1,
            "filename": "retvec-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d401124c5159266adc55205b6bd2b733",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 66408,
            "upload_time": "2023-08-02T21:38:19",
            "upload_time_iso_8601": "2023-08-02T21:38:19.711393Z",
            "url": "https://files.pythonhosted.org/packages/fe/8f/db725817dddaa443721d116429bf9f024f40c061fb3ce36800ecbe3ad10d/retvec-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f3e7ab797f2b5e71f62690f1d2e3e848bacdc0d9dff48bda5ce9051253720237",
                "md5": "12ecedce99a33e74af2a3e8b991e64d6",
                "sha256": "572426a4b9535b2274f734d7744bac80949085373874503542237b2870380446"
            },
            "downloads": -1,
            "filename": "retvec-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "12ecedce99a33e74af2a3e8b991e64d6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 24689,
            "upload_time": "2023-08-02T21:38:21",
            "upload_time_iso_8601": "2023-08-02T21:38:21.473004Z",
            "url": "https://files.pythonhosted.org/packages/f3/e7/ab797f2b5e71f62690f1d2e3e848bacdc0d9dff48bda5ce9051253720237/retvec-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-02 21:38:21",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "google-research",
    "github_project": "retvec",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "retvec"
}
        
Elapsed time: 0.13435s