reva-coregistration


Namereva-coregistration JSON
Version 0.1.0 PyPI version JSON
download
home_pageNone
SummaryA Python package for image coregistration and coordinate transformation
upload_time2025-07-28 19:39:05
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords coregistration image-processing coordinate-transformation medical-imaging
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Reva Coregistration

A Python package for image coregistration and coordinate transformation, specifically designed for medical imaging applications.

## Features

- **Image Coregistration**: Align images using landmark-based transformations
- **Coordinate Transformation**: Convert coordinates between different image spaces
- **Non-linear Warping**: Apply advanced warping techniques for precise alignment
- **Slice Management**: Handle multi-slice image data
- **Tile Processing**: Efficient processing of large images using tiling

## Installation

```bash
pip install reva-coregistration
```

## Quick Start

```python
from reva_coregistration import get_associated_coordinates

# Define landmarks for coregistration
landmarks = [
    {"target": {"x": 100, "y": 200}, "source": {"x": 150, "y": 250}},
    {"target": {"x": 300, "y": 400}, "source": {"x": 350, "y": 450}},
    # ... more landmark pairs
]

# Get associated coordinates
coordinates = get_associated_coordinates(
    x_percentage=0.5,
    y_percentage=0.3,
    source_image_width=1024,
    source_image_height=768,
    source_is_photograph=True,
    target_image_width=2048,
    target_image_height=1536,
    apply_nonlinear_warping=True,
    landmarks=landmarks
)

print(coordinates)
```

## Documentation

For detailed documentation, please visit the [project repository](https://github.com/yourusername/reva-coregistration).

## Development

To set up the development environment:

```bash
git clone https://github.com/yourusername/reva-coregistration.git
cd reva-coregistration
pip install -e ".[dev]"
```

Run tests:
```bash
pytest
```

## License

This project is licensed under the MIT License - see the LICENSE file for details.

## Contributing

Contributions are welcome! Please feel free to submit a Pull Request. 

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "reva-coregistration",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "Your Name <your.email@example.com>",
    "keywords": "coregistration, image-processing, coordinate-transformation, medical-imaging",
    "author": null,
    "author_email": "Your Name <your.email@example.com>",
    "download_url": "https://files.pythonhosted.org/packages/56/dd/0b772798aabe35041da46e7a9a6312c432df4dd86560d61ee7b16fab8353/reva_coregistration-0.1.0.tar.gz",
    "platform": null,
    "description": "# Reva Coregistration\n\nA Python package for image coregistration and coordinate transformation, specifically designed for medical imaging applications.\n\n## Features\n\n- **Image Coregistration**: Align images using landmark-based transformations\n- **Coordinate Transformation**: Convert coordinates between different image spaces\n- **Non-linear Warping**: Apply advanced warping techniques for precise alignment\n- **Slice Management**: Handle multi-slice image data\n- **Tile Processing**: Efficient processing of large images using tiling\n\n## Installation\n\n```bash\npip install reva-coregistration\n```\n\n## Quick Start\n\n```python\nfrom reva_coregistration import get_associated_coordinates\n\n# Define landmarks for coregistration\nlandmarks = [\n    {\"target\": {\"x\": 100, \"y\": 200}, \"source\": {\"x\": 150, \"y\": 250}},\n    {\"target\": {\"x\": 300, \"y\": 400}, \"source\": {\"x\": 350, \"y\": 450}},\n    # ... more landmark pairs\n]\n\n# Get associated coordinates\ncoordinates = get_associated_coordinates(\n    x_percentage=0.5,\n    y_percentage=0.3,\n    source_image_width=1024,\n    source_image_height=768,\n    source_is_photograph=True,\n    target_image_width=2048,\n    target_image_height=1536,\n    apply_nonlinear_warping=True,\n    landmarks=landmarks\n)\n\nprint(coordinates)\n```\n\n## Documentation\n\nFor detailed documentation, please visit the [project repository](https://github.com/yourusername/reva-coregistration).\n\n## Development\n\nTo set up the development environment:\n\n```bash\ngit clone https://github.com/yourusername/reva-coregistration.git\ncd reva-coregistration\npip install -e \".[dev]\"\n```\n\nRun tests:\n```bash\npytest\n```\n\n## License\n\nThis project is licensed under the MIT License - see the LICENSE file for details.\n\n## Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request. \n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A Python package for image coregistration and coordinate transformation",
    "version": "0.1.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/yourusername/reva-coregistration/issues",
        "Documentation": "https://github.com/yourusername/reva-coregistration#readme",
        "Homepage": "https://github.com/yourusername/reva-coregistration",
        "Repository": "https://github.com/yourusername/reva-coregistration"
    },
    "split_keywords": [
        "coregistration",
        " image-processing",
        " coordinate-transformation",
        " medical-imaging"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "4a66cf242c249dcaca6883ee24567587195dcb7904fa1d259f68887cfecd93e9",
                "md5": "315a0f9aa4103811e20cbc8e17e4fe71",
                "sha256": "04493205f5e97dea682170f0b8952126b84f9cc3dbb4952eaba487034154b234"
            },
            "downloads": -1,
            "filename": "reva_coregistration-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "315a0f9aa4103811e20cbc8e17e4fe71",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 30085,
            "upload_time": "2025-07-28T19:39:04",
            "upload_time_iso_8601": "2025-07-28T19:39:04.205721Z",
            "url": "https://files.pythonhosted.org/packages/4a/66/cf242c249dcaca6883ee24567587195dcb7904fa1d259f68887cfecd93e9/reva_coregistration-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "56dd0b772798aabe35041da46e7a9a6312c432df4dd86560d61ee7b16fab8353",
                "md5": "4c275f53f2c82fce53cb7ce15242c7d9",
                "sha256": "da9f9dd3a575ff9cc588f2f63dad399c2802c5848f08d6943ad7bcdc03aee17a"
            },
            "downloads": -1,
            "filename": "reva_coregistration-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "4c275f53f2c82fce53cb7ce15242c7d9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 38879,
            "upload_time": "2025-07-28T19:39:05",
            "upload_time_iso_8601": "2025-07-28T19:39:05.718660Z",
            "url": "https://files.pythonhosted.org/packages/56/dd/0b772798aabe35041da46e7a9a6312c432df4dd86560d61ee7b16fab8353/reva_coregistration-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-28 19:39:05",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "yourusername",
    "github_project": "reva-coregistration",
    "github_not_found": true,
    "lcname": "reva-coregistration"
}
        
Elapsed time: 1.86509s