river-cli


Nameriver-cli JSON
Version 3.2.0 PyPI version JSON
download
home_pageNone
SummaryA CLI application for Large Scale Particle Image Velocimetry (LSPIV).
upload_time2025-08-05 21:41:14
maintainerNone
docs_urlNone
authorNone
requires_python>=3.11
licenseNone
keywords cli lspiv flow discharge velocity analysis hydraulic models
VCS
bugtrack_url
requirements opencv-python-headless matplotlib scipy click numba tqdm tablib pyfftw
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
<div align="center">
  <img src="https://raw.githubusercontent.com/oruscam/RIVeR/main/river/docs/_static/river_logo.svg" width="350px">
  <br />
  <br />

  <p>
    <strong>Modern LSPIV toolkit for water-surface velocity analysis and flow discharge measurements</strong>
</div>

[![Status](https://img.shields.io/badge/status-active-brightgreen)]()
[![License: AGPL v3](https://img.shields.io/badge/License-AGPL%20v3-blue.svg)](https://www.gnu.org/licenses/agpl-3.0)
[![Python Version](https://img.shields.io/badge/python-3.12+-blue.svg)](https://www.python.org/downloads/)
[![React Version](https://img.shields.io/badge/react-18.0+-61DAFB.svg)](https://reactjs.org/)
[![PyPI version](https://img.shields.io/pypi/v/river-cli.svg)](https://pypi.org/project/river-cli/)
[![DOI](https://img.shields.io/badge/DOI-10.1016%2Fj.cageo.2017.07.009-blue)](https://doi.org/10.1016/j.cageo.2017.07.009)

---

# RIVeR: Rectification of Image Velocity Results

**RIVeR** (Rectification of Image Velocity Results) is a modern, open-source toolkit for Large Scale Particle Image Velocimetry (**LSPIV**) distributed by [ORUS](https://orus.cam). Built with **Python** and **React**, it provides a user-friendly interface for water-surface velocity analysis and flow discharge measurements in rivers and large-scale hydraulic models.


<figure>
    <img src="https://raw.githubusercontent.com/oruscam/RIVeR/main/river/docs/_static/screenshot_results.png" width=500>
    <p ><i>Example of RIVeR velocimetry analysis of river flow</i></p>
</figure>

---

## ๐Ÿ’ง Overview
RIVeR is a specialized tool for applying Large Scale Particle Image Velocimetry (LSPIV) techniques as a non-contact method to estimate discharge in rivers and channels from video footage. The software guides the process through intuitive defaults and pre-configured settings, enabling users to generate discharge calculations without extensive prior knowledge of the technique. The workflow guides users through a series of straightforward steps culminating in comprehensive visual reports.

Originally developed in MATLAB in 2015 and well-received by the hydrology community, RIVeR has now been reimplemented in Python and JavaScript to improve accessibility, performance, and cross-platform compatibility.
<figure>
    <img src="https://raw.githubusercontent.com/oruscam/RIVeR/main/river/docs/_static/oblique_rectification.gif" width=500>
    <p><i>Demonstration of interactive oblique image rectification process in RIVeR</i></p>
</figure>

---


## ๐Ÿ“– User Manual

For a detailed step-by-step guide on using RIVeR's GUI (Graphical User Interface),
please refer to the **[User Manual](user-manual.md)**.

---


## โœจ Key Features

* Process footage from multiple sources:
  * UAV/drone aerial imagery
  * Oblique view camera (from riverbank)
  * Fixed station cameras (contiunous monitoring)
* Frame extraction from videos with customizable parameters
* FFT-based PIV analysis with multi-pass support for increased accuracy
* Interactive result visualization with customizable vector fields
* Georeferencing and coordinate transformations
* Multi Cross-sectional flow analysis
* Automated beautiful report generation ([like this one !](https://oruscam.github.io/RIVeR/sample_report.html))
* Multi-platform support (**Windows**, **macOS**, **Linux**)


---

## ๐ŸŒ Multi-Language Support

- RIVeR available in multiple languages!
  - English ๐Ÿ‡บ๐Ÿ‡ธ
  - Spanish ๐Ÿ‡ฆ๐Ÿ‡ท
  - French ๐Ÿ‡ซ๐Ÿ‡ท
  - Italian ๐Ÿ‡ฎ๐Ÿ‡น
  - Portuguese ๐Ÿ‡ง๐Ÿ‡ท
  - German ๐Ÿ‡ฉ๐Ÿ‡ช
  - [More coming soon!]

---
## ๐Ÿ“ฅ Download Compiled Releases

If you don't want to bother with code at all (we get it, sometimes you just want things to work!), pre-compiled standalone versions are available:

| โŠž Windows | โŒ˜ macOS | โ—† Linux |
|:---:|:---:|:---:|
| [EXE](https://github.com/oruscam/RIVeR/releases/download/v3.2.0/RIVeR-Windows-3.2.0-Setup.exe) | [DMG](https://github.com/oruscam/RIVeR/releases/download/v3.2.0/RIVeR-Mac-3.2.0-Installer.dmg) | [DEB](https://github.com/oruscam/RIVeR/releases/download/v3.2.0/RIVeR-Linux-3.2.0.deb) [RPM](https://github.com/oruscam/RIVeR/releases/download/v3.2.0/RIVeR-Linux-3.2.0.rpm) |


These packages include both the GUI and CLI tools in a ready-to-use application. No Python or JavaScript knowledge required!


These packages include both the GUI and CLI tools in a ready-to-use application. Simply download, extract (if needed), and run the application - no Python or JavaScript knowledge required!

---
## ๐Ÿง‘โ€๐Ÿ’ป Developer Installation & Usage

For those who prefer to work with the source code or contribute to RIVeR's development, here's how to get started:

### Prerequisites

- Python 3.12+
- pip package manager
- Git (for cloning the repository)

### Development Installation
```bash
git clone https://github.com/oruscam/RIVeR.git
cd RIVeR
pip install -e .
```
### CLI Installation
RIVeR CLI provides a comprehensive set of commands for performing LSPIV analysis through the command line.

```bash
pip install river-cli
```
#### Basic Usage
```bash
river-cli [OPTIONS] COMMAND [ARGS]...
```
To see all available commands and options:
```bash
river-cli --help
```
#### Example Workflow
```bash
# 1. Extract frames from video
river-cli video-to-frames river_video.mp4 ./frames --every 2

# 2. Generate transformation matrix
river-cli get-uav-transformation-matrix 100 200 300 400 0 0 10 10 --image-path ./frames/frame_001.jpg

# 3. Create masks for PIV analysis
river-cli create-mask-and-bbox 3 ./frames/frame_001.jpg ./xsections.json ./transformation_matrix.json --save-png-mask

# 4. Run PIV analysis
river-cli piv-analyze ./frames --mask ./mask.json --workdir ./results

# 5. Calculate discharge
river-cli update-xsection ./xsections.json ./results/piv_results.json ./transformation_matrix.json --step 2 --fps 30 --id-section 0
```

### Graphical User Interface (GUI)

RIVeR also provides a user-friendly graphical interface built with React. The GUI offers an intuitive way to perform LSPIV analysis without using command-line tools.

Key GUI features include:
- Interactive workflow interface
- Visual cross-section creation
- Real-time PIV analysis visualization
- Result export capabilities

For detailed information about installation, usage, and features of the GUI, please see the dedicated [GUI documentation](gui/README.md).

---

## ๐Ÿ“‚ Project Structure

```
river/
.
โ”œโ”€โ”€ LICENSE
โ”œโ”€โ”€ examples       # Jupyter examples
โ”‚   โ”œโ”€โ”€ 00_introduction.ipynb
โ”‚   โ”œโ”€โ”€ 01_video_to_frames.ipynb
โ”‚   โ”œโ”€โ”€ 02a_nadir_transformation.ipynb
โ”‚   โ”œโ”€โ”€ 02b_oblique_transformation.ipynb
โ”‚   โ”œโ”€โ”€ 02c_fixed_station_transformation.ipynb
โ”‚   โ”œโ”€โ”€ 03_cross_sections.ipynb
โ”‚   โ”œโ”€โ”€ 04_piv_analysis.ipynb
โ”‚   โ”œโ”€โ”€ 05_discharge_calculation.ipynb
โ”‚   โ”œโ”€โ”€ data
โ”‚   โ”œโ”€โ”€ results
โ”‚   โ””โ”€โ”€ utils
โ”œโ”€โ”€ gui
โ”œโ”€โ”€ pyproject.toml
โ”œโ”€โ”€ readme.md
โ”œโ”€โ”€ requirements.txt
โ””โ”€โ”€ river
    โ”œโ”€โ”€ cli
    โ”œโ”€โ”€ core
    โ”‚   โ”œโ”€โ”€ compute_section.py       # Section computation utilities
    โ”‚   โ”œโ”€โ”€ coordinate_transform.py   # Coordinate system transformations
    โ”‚   โ”œโ”€โ”€ define_roi_masks.py      # ROI and mask definitions
    โ”‚   โ”œโ”€โ”€ exceptions.py            # Custom exceptions
    โ”‚   โ”œโ”€โ”€ image_preprocessing.py   # Image preparation tools
    โ”‚   โ”œโ”€โ”€ matlab_smoothn.py        # Smoothing algorithms
    โ”‚   โ”œโ”€โ”€ piv_fftmulti.py         # FFT-based PIV processing
    โ”‚   โ”œโ”€โ”€ piv_loop.py             # PIV processing loop
    โ”‚   โ”œโ”€โ”€ piv_pipeline.py         # Main PIV pipeline
    โ”‚   โ””โ”€โ”€ video_to_frames.py      # Video frame extraction
    โ””โ”€โ”€ docs
```
---

## ๐Ÿ“š Jupyter Examples

Browse through our collection of Jupyter Notebook examples to learn how to use RIVeR for various analyses (requires development installation):

- [Introduction to RIVeR](examples/00_introduction.ipynb)
- [Video Frame Extraction](examples/01_video_to_frames.ipynb)
- [UAV/Drone Transformations](examples/02a_nadir_transformation.ipynb)
- [Oblique View Transformations](examples/02b_oblique_transformation.ipynb)
- [Fixed Station Transformations](examples/02c_fixed_station_transformation.ipynb)
- [Cross Section Analysis](examples/03_cross_sections.ipynb)
- [PIV Analysis Workflow](examples/04_piv_analysis.ipynb)
- [Discharge Calculation](examples/05_discharge_calculation.ipynb)

These interactive examples provide step-by-step guidance for common RIVeR workflows. To run them, make sure you've completed the development installation described above.
## ๐Ÿ”ฌ Citation

If you use RIVeR in your research, please cite:

```bibtex
@article{patalano2017river,
    title={Rectification of Image Velocity Results (RIVeR): A simple and user-friendly toolbox
           for large scale water surface Particle Image Velocimetry (PIV) and
           Particle Tracking Velocimetry (PTV)},
    author={Patalano, Antoine and Garcรญa, Carlos Marcelo and Rodrรญguez, Andrรฉs},
    journal={Computers \& Geosciences},
    volume={105},
    pages={103--114},
    year={2017},
    publisher={Elsevier}
}
```
---
## ๐Ÿ‘ฅ Authors

### Core Team
- **Antoine Patalano** - *Project Lead, Feature Development* - [UNC/ORUS]
- **Leandro Massรณ** - *Feature Development* - [UNC/ORUS]

### Development Team
- **Nicolas Stefani** - *CLI & Backend Development*
- **Tomas Stefani** - *Frontend Development*

---

## ๐Ÿค Contributing

Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please [open an issue](https://github.com/oruscam/RIVeR/issues) first to discuss what you would like to change.

---

## ๐Ÿ“œ License
RIVeR is licensed under the [GNU Affero General Public License v3.0](LICENSE) (AGPL-3.0).

---

## ๐Ÿ’ญAcknowledgments
- Contributing organizations:
  - [UNC (National University of Cรณrdoba)](https://www.unc.edu.ar/) - [Faculty of Exact, Physical and Natural Sciences](https://fcefyn.unc.edu.ar/)
  - [INA (National Institute of Water, Argentina)](https://www.argentina.gob.ar/ina)
  - [CONICET (National Scientific and Technical Research Council)](https://www.conicet.gov.ar/)


- [WMO HydroHub](https://wmo.int/media/update/winner-of-wmo-hydrohub-innovation-call-latin-america-and-caribbean?book=21576): For funding the development of RIVeR 3 (2024-2025)
- [PIVlab project](https://la.mathworks.com/matlabcentral/fileexchange/27659-pivlab-particle-image-velocimetry-piv-tool-with-gui): The pioneering PIV analysis tool that inspired aspects of RIVeR's development

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "river-cli",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": null,
    "keywords": "cli, lspiv, flow, discharge, velocity, analysis, hydraulic, models",
    "author": null,
    "author_email": "Antoine Patalano <antoine.patalano@unc.edu.ar>, Nicolas Stefani <nicolas471@gmail.com>, Tomas Stefani <tomyste02@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/2b/92/67752637df9176c6002069a4a439a96ece6aee7cd16ec675da24f7195ee0/river_cli-3.2.0.tar.gz",
    "platform": null,
    "description": "\n<div align=\"center\">\n  <img src=\"https://raw.githubusercontent.com/oruscam/RIVeR/main/river/docs/_static/river_logo.svg\" width=\"350px\">\n  <br />\n  <br />\n\n  <p>\n    <strong>Modern LSPIV toolkit for water-surface velocity analysis and flow discharge measurements</strong>\n</div>\n\n[![Status](https://img.shields.io/badge/status-active-brightgreen)]()\n[![License: AGPL v3](https://img.shields.io/badge/License-AGPL%20v3-blue.svg)](https://www.gnu.org/licenses/agpl-3.0)\n[![Python Version](https://img.shields.io/badge/python-3.12+-blue.svg)](https://www.python.org/downloads/)\n[![React Version](https://img.shields.io/badge/react-18.0+-61DAFB.svg)](https://reactjs.org/)\n[![PyPI version](https://img.shields.io/pypi/v/river-cli.svg)](https://pypi.org/project/river-cli/)\n[![DOI](https://img.shields.io/badge/DOI-10.1016%2Fj.cageo.2017.07.009-blue)](https://doi.org/10.1016/j.cageo.2017.07.009)\n\n---\n\n# RIVeR: Rectification of Image Velocity Results\n\n**RIVeR** (Rectification of Image Velocity Results) is a modern, open-source toolkit for Large Scale Particle Image Velocimetry (**LSPIV**) distributed by [ORUS](https://orus.cam). Built with **Python** and **React**, it provides a user-friendly interface for water-surface velocity analysis and flow discharge measurements in rivers and large-scale hydraulic models.\n\n\n<figure>\n    <img src=\"https://raw.githubusercontent.com/oruscam/RIVeR/main/river/docs/_static/screenshot_results.png\" width=500>\n    <p ><i>Example of RIVeR velocimetry analysis of river flow</i></p>\n</figure>\n\n---\n\n## \ud83d\udca7 Overview\nRIVeR is a specialized tool for applying Large Scale Particle Image Velocimetry (LSPIV) techniques as a non-contact method to estimate discharge in rivers and channels from video footage. The software guides the process through intuitive defaults and pre-configured settings, enabling users to generate discharge calculations without extensive prior knowledge of the technique. The workflow guides users through a series of straightforward steps culminating in comprehensive visual reports.\n\nOriginally developed in MATLAB in 2015 and well-received by the hydrology community, RIVeR has now been reimplemented in Python and JavaScript to improve accessibility, performance, and cross-platform compatibility.\n<figure>\n    <img src=\"https://raw.githubusercontent.com/oruscam/RIVeR/main/river/docs/_static/oblique_rectification.gif\" width=500>\n    <p><i>Demonstration of interactive oblique image rectification process in RIVeR</i></p>\n</figure>\n\n---\n\n\n## \ud83d\udcd6 User Manual\n\nFor a detailed step-by-step guide on using RIVeR's GUI (Graphical User Interface),\nplease refer to the **[User Manual](user-manual.md)**.\n\n---\n\n\n## \u2728 Key Features\n\n* Process footage from multiple sources:\n  * UAV/drone aerial imagery\n  * Oblique view camera (from riverbank)\n  * Fixed station cameras (contiunous monitoring)\n* Frame extraction from videos with customizable parameters\n* FFT-based PIV analysis with multi-pass support for increased accuracy\n* Interactive result visualization with customizable vector fields\n* Georeferencing and coordinate transformations\n* Multi Cross-sectional flow analysis\n* Automated beautiful report generation ([like this one !](https://oruscam.github.io/RIVeR/sample_report.html))\n* Multi-platform support (**Windows**, **macOS**, **Linux**)\n\n\n---\n\n## \ud83c\udf0d Multi-Language Support\n\n- RIVeR available in multiple languages!\n  - English \ud83c\uddfa\ud83c\uddf8\n  - Spanish \ud83c\udde6\ud83c\uddf7\n  - French \ud83c\uddeb\ud83c\uddf7\n  - Italian \ud83c\uddee\ud83c\uddf9\n  - Portuguese \ud83c\udde7\ud83c\uddf7\n  - German \ud83c\udde9\ud83c\uddea\n  - [More coming soon!]\n\n---\n## \ud83d\udce5 Download Compiled Releases\n\nIf you don't want to bother with code at all (we get it, sometimes you just want things to work!), pre-compiled standalone versions are available:\n\n| \u229e Windows | \u2318 macOS | \u25c6 Linux |\n|:---:|:---:|:---:|\n| [EXE](https://github.com/oruscam/RIVeR/releases/download/v3.2.0/RIVeR-Windows-3.2.0-Setup.exe) | [DMG](https://github.com/oruscam/RIVeR/releases/download/v3.2.0/RIVeR-Mac-3.2.0-Installer.dmg) | [DEB](https://github.com/oruscam/RIVeR/releases/download/v3.2.0/RIVeR-Linux-3.2.0.deb) [RPM](https://github.com/oruscam/RIVeR/releases/download/v3.2.0/RIVeR-Linux-3.2.0.rpm) |\n\n\nThese packages include both the GUI and CLI tools in a ready-to-use application. No Python or JavaScript knowledge required!\n\n\nThese packages include both the GUI and CLI tools in a ready-to-use application. Simply download, extract (if needed), and run the application - no Python or JavaScript knowledge required!\n\n---\n## \ud83e\uddd1\u200d\ud83d\udcbb Developer Installation & Usage\n\nFor those who prefer to work with the source code or contribute to RIVeR's development, here's how to get started:\n\n### Prerequisites\n\n- Python 3.12+\n- pip package manager\n- Git (for cloning the repository)\n\n### Development Installation\n```bash\ngit clone https://github.com/oruscam/RIVeR.git\ncd RIVeR\npip install -e .\n```\n### CLI Installation\nRIVeR CLI provides a comprehensive set of commands for performing LSPIV analysis through the command line.\n\n```bash\npip install river-cli\n```\n#### Basic Usage\n```bash\nriver-cli [OPTIONS] COMMAND [ARGS]...\n```\nTo see all available commands and options:\n```bash\nriver-cli --help\n```\n#### Example Workflow\n```bash\n# 1. Extract frames from video\nriver-cli video-to-frames river_video.mp4 ./frames --every 2\n\n# 2. Generate transformation matrix\nriver-cli get-uav-transformation-matrix 100 200 300 400 0 0 10 10 --image-path ./frames/frame_001.jpg\n\n# 3. Create masks for PIV analysis\nriver-cli create-mask-and-bbox 3 ./frames/frame_001.jpg ./xsections.json ./transformation_matrix.json --save-png-mask\n\n# 4. Run PIV analysis\nriver-cli piv-analyze ./frames --mask ./mask.json --workdir ./results\n\n# 5. Calculate discharge\nriver-cli update-xsection ./xsections.json ./results/piv_results.json ./transformation_matrix.json --step 2 --fps 30 --id-section 0\n```\n\n### Graphical User Interface (GUI)\n\nRIVeR also provides a user-friendly graphical interface built with React. The GUI offers an intuitive way to perform LSPIV analysis without using command-line tools.\n\nKey GUI features include:\n- Interactive workflow interface\n- Visual cross-section creation\n- Real-time PIV analysis visualization\n- Result export capabilities\n\nFor detailed information about installation, usage, and features of the GUI, please see the dedicated [GUI documentation](gui/README.md).\n\n---\n\n## \ud83d\udcc2 Project Structure\n\n```\nriver/\n.\n\u251c\u2500\u2500 LICENSE\n\u251c\u2500\u2500 examples       # Jupyter examples\n\u2502   \u251c\u2500\u2500 00_introduction.ipynb\n\u2502   \u251c\u2500\u2500 01_video_to_frames.ipynb\n\u2502   \u251c\u2500\u2500 02a_nadir_transformation.ipynb\n\u2502   \u251c\u2500\u2500 02b_oblique_transformation.ipynb\n\u2502   \u251c\u2500\u2500 02c_fixed_station_transformation.ipynb\n\u2502   \u251c\u2500\u2500 03_cross_sections.ipynb\n\u2502   \u251c\u2500\u2500 04_piv_analysis.ipynb\n\u2502   \u251c\u2500\u2500 05_discharge_calculation.ipynb\n\u2502   \u251c\u2500\u2500 data\n\u2502   \u251c\u2500\u2500 results\n\u2502   \u2514\u2500\u2500 utils\n\u251c\u2500\u2500 gui\n\u251c\u2500\u2500 pyproject.toml\n\u251c\u2500\u2500 readme.md\n\u251c\u2500\u2500 requirements.txt\n\u2514\u2500\u2500 river\n    \u251c\u2500\u2500 cli\n    \u251c\u2500\u2500 core\n    \u2502   \u251c\u2500\u2500 compute_section.py       # Section computation utilities\n    \u2502   \u251c\u2500\u2500 coordinate_transform.py   # Coordinate system transformations\n    \u2502   \u251c\u2500\u2500 define_roi_masks.py      # ROI and mask definitions\n    \u2502   \u251c\u2500\u2500 exceptions.py            # Custom exceptions\n    \u2502   \u251c\u2500\u2500 image_preprocessing.py   # Image preparation tools\n    \u2502   \u251c\u2500\u2500 matlab_smoothn.py        # Smoothing algorithms\n    \u2502   \u251c\u2500\u2500 piv_fftmulti.py         # FFT-based PIV processing\n    \u2502   \u251c\u2500\u2500 piv_loop.py             # PIV processing loop\n    \u2502   \u251c\u2500\u2500 piv_pipeline.py         # Main PIV pipeline\n    \u2502   \u2514\u2500\u2500 video_to_frames.py      # Video frame extraction\n    \u2514\u2500\u2500 docs\n```\n---\n\n## \ud83d\udcda Jupyter Examples\n\nBrowse through our collection of Jupyter Notebook examples to learn how to use RIVeR for various analyses (requires development installation):\n\n- [Introduction to RIVeR](examples/00_introduction.ipynb)\n- [Video Frame Extraction](examples/01_video_to_frames.ipynb)\n- [UAV/Drone Transformations](examples/02a_nadir_transformation.ipynb)\n- [Oblique View Transformations](examples/02b_oblique_transformation.ipynb)\n- [Fixed Station Transformations](examples/02c_fixed_station_transformation.ipynb)\n- [Cross Section Analysis](examples/03_cross_sections.ipynb)\n- [PIV Analysis Workflow](examples/04_piv_analysis.ipynb)\n- [Discharge Calculation](examples/05_discharge_calculation.ipynb)\n\nThese interactive examples provide step-by-step guidance for common RIVeR workflows. To run them, make sure you've completed the development installation described above.\n## \ud83d\udd2c Citation\n\nIf you use RIVeR in your research, please cite:\n\n```bibtex\n@article{patalano2017river,\n    title={Rectification of Image Velocity Results (RIVeR): A simple and user-friendly toolbox\n           for large scale water surface Particle Image Velocimetry (PIV) and\n           Particle Tracking Velocimetry (PTV)},\n    author={Patalano, Antoine and Garc\u00eda, Carlos Marcelo and Rodr\u00edguez, Andr\u00e9s},\n    journal={Computers \\& Geosciences},\n    volume={105},\n    pages={103--114},\n    year={2017},\n    publisher={Elsevier}\n}\n```\n---\n## \ud83d\udc65 Authors\n\n### Core Team\n- **Antoine Patalano** - *Project Lead, Feature Development* - [UNC/ORUS]\n- **Leandro Mass\u00f3** - *Feature Development* - [UNC/ORUS]\n\n### Development Team\n- **Nicolas Stefani** - *CLI & Backend Development*\n- **Tomas Stefani** - *Frontend Development*\n\n---\n\n## \ud83e\udd1d Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request. For major changes, please [open an issue](https://github.com/oruscam/RIVeR/issues) first to discuss what you would like to change.\n\n---\n\n## \ud83d\udcdc License\nRIVeR is licensed under the [GNU Affero General Public License v3.0](LICENSE) (AGPL-3.0).\n\n---\n\n## \ud83d\udcadAcknowledgments\n- Contributing organizations:\n  - [UNC (National University of C\u00f3rdoba)](https://www.unc.edu.ar/) - [Faculty of Exact, Physical and Natural Sciences](https://fcefyn.unc.edu.ar/)\n  - [INA (National Institute of Water, Argentina)](https://www.argentina.gob.ar/ina)\n  - [CONICET (National Scientific and Technical Research Council)](https://www.conicet.gov.ar/)\n\n\n- [WMO HydroHub](https://wmo.int/media/update/winner-of-wmo-hydrohub-innovation-call-latin-america-and-caribbean?book=21576): For funding the development of RIVeR 3 (2024-2025)\n- [PIVlab project](https://la.mathworks.com/matlabcentral/fileexchange/27659-pivlab-particle-image-velocimetry-piv-tool-with-gui): The pioneering PIV analysis tool that inspired aspects of RIVeR's development\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A CLI application for Large Scale Particle Image Velocimetry (LSPIV).",
    "version": "3.2.0",
    "project_urls": {
        "Homepage": "https://github.com/aPatal/RIVeR/"
    },
    "split_keywords": [
        "cli",
        " lspiv",
        " flow",
        " discharge",
        " velocity",
        " analysis",
        " hydraulic",
        " models"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ab0ed5e33b2ca46a995f1a7fe060827d1bfd555fd59704699deb5fcbd86b6898",
                "md5": "cb1eed6240b6705ca664b4637a9a951b",
                "sha256": "cc8e4a2305b785c0a02a531d1c6adbb54686fad0d44c3fe8031821291ef9a429"
            },
            "downloads": -1,
            "filename": "river_cli-3.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "cb1eed6240b6705ca664b4637a9a951b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11",
            "size": 64048,
            "upload_time": "2025-08-05T21:41:13",
            "upload_time_iso_8601": "2025-08-05T21:41:13.318753Z",
            "url": "https://files.pythonhosted.org/packages/ab/0e/d5e33b2ca46a995f1a7fe060827d1bfd555fd59704699deb5fcbd86b6898/river_cli-3.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "2b9267752637df9176c6002069a4a439a96ece6aee7cd16ec675da24f7195ee0",
                "md5": "76d9e23076240e030169437f01be2e28",
                "sha256": "8fc6c84ecc060b24b491eaa65915b3c92db10bd9b7674b5156a91a2927a67317"
            },
            "downloads": -1,
            "filename": "river_cli-3.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "76d9e23076240e030169437f01be2e28",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 62438,
            "upload_time": "2025-08-05T21:41:14",
            "upload_time_iso_8601": "2025-08-05T21:41:14.581761Z",
            "url": "https://files.pythonhosted.org/packages/2b/92/67752637df9176c6002069a4a439a96ece6aee7cd16ec675da24f7195ee0/river_cli-3.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-05 21:41:14",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "aPatal",
    "github_project": "RIVeR",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "opencv-python-headless",
            "specs": [
                [
                    "==",
                    "4.10.0.84"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.9.0"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    "<=",
                    "1.14"
                ]
            ]
        },
        {
            "name": "click",
            "specs": [
                [
                    "==",
                    "8.1.7"
                ]
            ]
        },
        {
            "name": "numba",
            "specs": [
                [
                    "==",
                    "0.60.0"
                ]
            ]
        },
        {
            "name": "tqdm",
            "specs": [
                [
                    "==",
                    "4.67.0"
                ]
            ]
        },
        {
            "name": "tablib",
            "specs": [
                [
                    "==",
                    "3.8.0"
                ]
            ]
        },
        {
            "name": "pyfftw",
            "specs": [
                [
                    "==",
                    "0.15.0"
                ]
            ]
        }
    ],
    "lcname": "river-cli"
}
        
Elapsed time: 0.42939s