rlenvironments


Namerlenvironments JSON
Version 0.2.2 PyPI version JSON
download
home_pagehttps://github.com/ukoksoy/rlenvironments
SummaryPython library for target seeking environment
upload_time2023-06-04 22:50:04
maintainer
docs_urlNone
authorUmut Koksoy
requires_python>=3.7
license
keywords reinforcement-learning environment target-seeking
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # rlenvironments

`rlenvironments` is a Python library that provides an environment called `TargetSeeker` for reinforcement learning tasks involving target seeking. It allows agents to navigate towards a target point in a bounded environment.

## Installation

pip install rlenvironments


## Usage

To use the `TargetSeeker` environment, you can follow this example:

```python
from rlenvironments.target_seeker import TargetSeeker

# Create an instance of TargetSeeker environment
env = TargetSeeker(image_option='show', output_interval=5)

for _ in range(20):

    # Reset the environment
    state = env.reset()

    while not env.episode_ended:

        # Choose an action
        action = env.random_action()

        # Take a step in the environment
        next_state, reward, done = env.step(action)

        # Do something with the results


[Output 1](https://github.com/ukoksoy/rlenvironments/blob/main/rlenvironments/target_seeker_images/output1.png)
[Output 2](https://github.com/ukoksoy/rlenvironments/blob/main/rlenvironments/target_seeker_images/output2.png)
[Output 3](https://github.com/ukoksoy/rlenvironments/blob/main/rlenvironments/target_seeker_images/output3.png)
[Output 4](https://github.com/ukoksoy/rlenvironments/blob/main/rlenvironments/target_seeker_images/output4.png)


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/ukoksoy/rlenvironments",
    "name": "rlenvironments",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "reinforcement-learning environment target-seeking",
    "author": "Umut Koksoy",
    "author_email": "umutkoksoy@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/58/39/288e86308206735505ab444b7554b3755165fc167921da090214c2a6a7be/rlenvironments-0.2.2.tar.gz",
    "platform": null,
    "description": "# rlenvironments\r\n\r\n`rlenvironments` is a Python library that provides an environment called `TargetSeeker` for reinforcement learning tasks involving target seeking. It allows agents to navigate towards a target point in a bounded environment.\r\n\r\n## Installation\r\n\r\npip install rlenvironments\r\n\r\n\r\n## Usage\r\n\r\nTo use the `TargetSeeker` environment, you can follow this example:\r\n\r\n```python\r\nfrom rlenvironments.target_seeker import TargetSeeker\r\n\r\n# Create an instance of TargetSeeker environment\r\nenv = TargetSeeker(image_option='show', output_interval=5)\r\n\r\nfor _ in range(20):\r\n\r\n    # Reset the environment\r\n    state = env.reset()\r\n\r\n    while not env.episode_ended:\r\n\r\n        # Choose an action\r\n        action = env.random_action()\r\n\r\n        # Take a step in the environment\r\n        next_state, reward, done = env.step(action)\r\n\r\n        # Do something with the results\r\n\r\n\r\n[Output 1](https://github.com/ukoksoy/rlenvironments/blob/main/rlenvironments/target_seeker_images/output1.png)\r\n[Output 2](https://github.com/ukoksoy/rlenvironments/blob/main/rlenvironments/target_seeker_images/output2.png)\r\n[Output 3](https://github.com/ukoksoy/rlenvironments/blob/main/rlenvironments/target_seeker_images/output3.png)\r\n[Output 4](https://github.com/ukoksoy/rlenvironments/blob/main/rlenvironments/target_seeker_images/output4.png)\r\n\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Python library for target seeking environment",
    "version": "0.2.2",
    "project_urls": {
        "Homepage": "https://github.com/ukoksoy/rlenvironments"
    },
    "split_keywords": [
        "reinforcement-learning",
        "environment",
        "target-seeking"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2f7049b843b110feee3185e8f6124201e8392c6c9e26ccb432a6fb920ec82e32",
                "md5": "d53b1cb2063843b237a15cd526ec52e8",
                "sha256": "6fbf948e52d2d4bf036d40aa9d42c1e938d003401e13542c260e18da0e8080a9"
            },
            "downloads": -1,
            "filename": "rlenvironments-0.2.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d53b1cb2063843b237a15cd526ec52e8",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 1742,
            "upload_time": "2023-06-04T22:50:02",
            "upload_time_iso_8601": "2023-06-04T22:50:02.616484Z",
            "url": "https://files.pythonhosted.org/packages/2f/70/49b843b110feee3185e8f6124201e8392c6c9e26ccb432a6fb920ec82e32/rlenvironments-0.2.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5839288e86308206735505ab444b7554b3755165fc167921da090214c2a6a7be",
                "md5": "4425c00ff76466bf0df4e5744971e5c6",
                "sha256": "5701d04337fc79b11c3fb30fb38b8fcd2f43d25d975fca2e466e4e98d13871c9"
            },
            "downloads": -1,
            "filename": "rlenvironments-0.2.2.tar.gz",
            "has_sig": false,
            "md5_digest": "4425c00ff76466bf0df4e5744971e5c6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 1749,
            "upload_time": "2023-06-04T22:50:04",
            "upload_time_iso_8601": "2023-06-04T22:50:04.652128Z",
            "url": "https://files.pythonhosted.org/packages/58/39/288e86308206735505ab444b7554b3755165fc167921da090214c2a6a7be/rlenvironments-0.2.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-04 22:50:04",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ukoksoy",
    "github_project": "rlenvironments",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "rlenvironments"
}
        
Elapsed time: 1.02288s