rolling-quantiles


Namerolling-quantiles JSON
Version 1.1.0 PyPI version JSON
download
home_pagehttps://github.com/marmarelis/rolling-quantiles
SummaryComposable and blazing fast rolling-quantile filters for streaming data and bulk batches.
upload_time2022-06-02 18:00:18
maintainer
docs_urlNone
authorMyrl Marmarelis
requires_python>=3.7
license
keywords numpy filter numeric signal streaming scipy quantiles rolling efficient realtime
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Rolling Quantiles for NumPy
## Hyper-efficient and composable filters.

* Simple, clean, intuitive interface.
* Supports streaming data or bulk processing.
* Python 3 bindings for a compact library written in pure C.

### A Quick Tour

```python
import numpy as np
import rolling_quantiles as rq

pipe = rq.Pipeline( # rq.Pipeline is the only stateful object
  # declare a cascade of filters by a sequence of immutable description objects
  rq.LowPass(window=200, portion=100, subsample_rate=2),
    # the above takes a median (100 out of 200) of the most recent 200 points
    # and then spits out every other one
  rq.HighPass(window=10, portion=3,  subsample_rate=1))
    # that subsampled rolling median is then fed into this filter that takes a
    # 30% quantile on a window of size 10, and subtracts it from its raw input

# the pipeline exposes a set of read-only attributes that describe it
pipe.lag # = 60.0, the effective number of time units that the real-time output
         #   is delayed from the input
pipe.stride # = 2, how many inputs it takes to produce an output
            #  (>1 due to subsampling)


input = np.random.randn(1000)
output = pipe.feed(input) # the core, singular exposed method

# every other output will be a NaN to demarcate unready values
subsampled_output = output[1::pipe.stride]
```

See the [Github repository](https://github.com/marmarelis/rolling-quantiles) for more details.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/marmarelis/rolling-quantiles",
    "name": "rolling-quantiles",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "numpy,filter,numeric,signal,streaming,scipy,quantiles,rolling,efficient,realtime",
    "author": "Myrl Marmarelis",
    "author_email": "myrl@marmarel.is",
    "download_url": "",
    "platform": null,
    "description": "# Rolling Quantiles for NumPy\n## Hyper-efficient and composable filters.\n\n* Simple, clean, intuitive interface.\n* Supports streaming data or bulk processing.\n* Python 3 bindings for a compact library written in pure C.\n\n### A Quick Tour\n\n```python\nimport numpy as np\nimport rolling_quantiles as rq\n\npipe = rq.Pipeline( # rq.Pipeline is the only stateful object\n  # declare a cascade of filters by a sequence of immutable description objects\n  rq.LowPass(window=200, portion=100, subsample_rate=2),\n    # the above takes a median (100 out of 200) of the most recent 200 points\n    # and then spits out every other one\n  rq.HighPass(window=10, portion=3,  subsample_rate=1))\n    # that subsampled rolling median is then fed into this filter that takes a\n    # 30% quantile on a window of size 10, and subtracts it from its raw input\n\n# the pipeline exposes a set of read-only attributes that describe it\npipe.lag # = 60.0, the effective number of time units that the real-time output\n         #   is delayed from the input\npipe.stride # = 2, how many inputs it takes to produce an output\n            #  (>1 due to subsampling)\n\n\ninput = np.random.randn(1000)\noutput = pipe.feed(input) # the core, singular exposed method\n\n# every other output will be a NaN to demarcate unready values\nsubsampled_output = output[1::pipe.stride]\n```\n\nSee the [Github repository](https://github.com/marmarelis/rolling-quantiles) for more details.\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Composable and blazing fast rolling-quantile filters for streaming data and bulk batches.",
    "version": "1.1.0",
    "project_urls": {
        "Homepage": "https://github.com/marmarelis/rolling-quantiles"
    },
    "split_keywords": [
        "numpy",
        "filter",
        "numeric",
        "signal",
        "streaming",
        "scipy",
        "quantiles",
        "rolling",
        "efficient",
        "realtime"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3449bde675f398833ba5655ccbdca9a5e338067cf3e53dd3a48809d70148df00",
                "md5": "859e89478b38e4ce7ce0420f8cd10d05",
                "sha256": "dbd1cb4d16ec2dae7bf2856c8b598d890e649ea00013602d9bc3a38cd1b63328"
            },
            "downloads": -1,
            "filename": "rolling_quantiles-1.1.0-cp38-cp38-macosx_10_15_x86_64.whl",
            "has_sig": false,
            "md5_digest": "859e89478b38e4ce7ce0420f8cd10d05",
            "packagetype": "bdist_wheel",
            "python_version": "cp38",
            "requires_python": ">=3.7",
            "size": 17157,
            "upload_time": "2022-06-02T18:00:18",
            "upload_time_iso_8601": "2022-06-02T18:00:18.675288Z",
            "url": "https://files.pythonhosted.org/packages/34/49/bde675f398833ba5655ccbdca9a5e338067cf3e53dd3a48809d70148df00/rolling_quantiles-1.1.0-cp38-cp38-macosx_10_15_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b125179c427734a2fded73aca55eaf6bbc4b7e0786ca59c8d6a7d34d54ae11ae",
                "md5": "b4193eb0e2dbc773b95967738a453fa0",
                "sha256": "cc6e702be058660644d41f6dc74a3973389fab85571eda3f143a667f1d243385"
            },
            "downloads": -1,
            "filename": "rolling_quantiles-1.1.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl",
            "has_sig": false,
            "md5_digest": "b4193eb0e2dbc773b95967738a453fa0",
            "packagetype": "bdist_wheel",
            "python_version": "cp38",
            "requires_python": ">=3.7",
            "size": 52301,
            "upload_time": "2022-06-02T18:00:20",
            "upload_time_iso_8601": "2022-06-02T18:00:20.957021Z",
            "url": "https://files.pythonhosted.org/packages/b1/25/179c427734a2fded73aca55eaf6bbc4b7e0786ca59c8d6a7d34d54ae11ae/rolling_quantiles-1.1.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f7d03e3148768e578b3da345900c4ec1eb259c97bcc87086ab1710fe3b08d264",
                "md5": "e72006b541aa532c25be0744e05c44c9",
                "sha256": "c2e85476a8c65e20def7d0c0ce849046caa942e110b42b98033937ac4b0b2b25"
            },
            "downloads": -1,
            "filename": "rolling_quantiles-1.1.0-cp38-cp38-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "e72006b541aa532c25be0744e05c44c9",
            "packagetype": "bdist_wheel",
            "python_version": "cp38",
            "requires_python": ">=3.7",
            "size": 17733,
            "upload_time": "2022-06-02T18:00:22",
            "upload_time_iso_8601": "2022-06-02T18:00:22.267808Z",
            "url": "https://files.pythonhosted.org/packages/f7/d0/3e3148768e578b3da345900c4ec1eb259c97bcc87086ab1710fe3b08d264/rolling_quantiles-1.1.0-cp38-cp38-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ee1d4402a80d71f7a27f595af36347257b4507f1bb679677015c049cbeccbd4c",
                "md5": "cbaa4a51a97bcf2865dde06090b25e1c",
                "sha256": "d5db3b233a4f78f3d2af3496f8952a23ea260f2db227511359991a8137d680df"
            },
            "downloads": -1,
            "filename": "rolling_quantiles-1.1.0-cp39-cp39-macosx_10_15_x86_64.whl",
            "has_sig": false,
            "md5_digest": "cbaa4a51a97bcf2865dde06090b25e1c",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.7",
            "size": 17159,
            "upload_time": "2022-06-02T18:00:23",
            "upload_time_iso_8601": "2022-06-02T18:00:23.549916Z",
            "url": "https://files.pythonhosted.org/packages/ee/1d/4402a80d71f7a27f595af36347257b4507f1bb679677015c049cbeccbd4c/rolling_quantiles-1.1.0-cp39-cp39-macosx_10_15_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "911b2893aa67f37551e8d6071fa6f9df0da0c4e8ed6ffe4014399e019832686c",
                "md5": "6f3149261bcafc90a5b1752d52a038ef",
                "sha256": "9d369bc6a65b133b22afe82125a8fabdf4d9dc5d07a39ebd16ccbb853ef5a888"
            },
            "downloads": -1,
            "filename": "rolling_quantiles-1.1.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl",
            "has_sig": false,
            "md5_digest": "6f3149261bcafc90a5b1752d52a038ef",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.7",
            "size": 52441,
            "upload_time": "2022-06-02T18:00:24",
            "upload_time_iso_8601": "2022-06-02T18:00:24.884960Z",
            "url": "https://files.pythonhosted.org/packages/91/1b/2893aa67f37551e8d6071fa6f9df0da0c4e8ed6ffe4014399e019832686c/rolling_quantiles-1.1.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fd41b4087abc6b138f16a44ea84e16cd851a1bcb35c8656e11f19d213a5b2b0c",
                "md5": "2722b0410d8759aec874340cdb9644f5",
                "sha256": "d26175b1aa25aeeca552229358be29d7346954a02da7ceacd434c188c6622dcb"
            },
            "downloads": -1,
            "filename": "rolling_quantiles-1.1.0-cp39-cp39-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "2722b0410d8759aec874340cdb9644f5",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.7",
            "size": 17740,
            "upload_time": "2022-06-02T18:00:26",
            "upload_time_iso_8601": "2022-06-02T18:00:26.389868Z",
            "url": "https://files.pythonhosted.org/packages/fd/41/b4087abc6b138f16a44ea84e16cd851a1bcb35c8656e11f19d213a5b2b0c/rolling_quantiles-1.1.0-cp39-cp39-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-06-02 18:00:18",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "marmarelis",
    "github_project": "rolling-quantiles",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "rolling-quantiles"
}
        
Elapsed time: 0.72897s